Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 96, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438881

RESUMEN

BACKGROUND: Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. RESULTS: BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. CONCLUSIONS: BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Sulfitos , Animales , Análisis de Secuencia de ADN , Genómica
2.
Genet Med ; 20(3): 360-364, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29155419

RESUMEN

PurposeWe comprehensively assessed the influence of reference minor alleles (RMAs), one of the inherent problems of the human reference genome sequence.MethodsThe variant call format (VCF) files provided by the 1000 Genomes and Exome Aggregation Consortium (ExAC) consortia were used to identify RMA sites. All coding RMA sites were checked for concordance with UniProt and the presence of same codon variants. RMA-corrected predictions of functional effect were obtained with SIFT, PolyPhen-2, and PROVEAN standalone tools and compared with dbNSFP v2.9 for consistency.ResultsWe systematically characterized the problem of RMAs and identified several possible ways in which RMA could interfere with accurate variant discovery and annotation. We have discovered a systematic bias in the automated variant effect prediction at the RMA loci, as well as widespread switching of functional consequences for variants located in the same codon as the RMA. As a convenient way to address the problem of RMAs we have developed a simple bioinformatic tool that identifies variation at RMA sites and provides correct annotations for all such substitutions. The tool is available free of charge at http://rmahunter.bioinf.me.ConclusionCorrection of RMA annotation enhances the accuracy of next-generation sequencing-based methods in clinical practice.


Asunto(s)
Alelos , Variación Genética , Anotación de Secuencia Molecular/normas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biología Computacional/métodos , Biología Computacional/normas , Genómica/métodos , Genómica/normas , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
3.
Sci Data ; 10(1): 186, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024526

RESUMEN

SWaveform, a newly created open genome-wide resource for read depth signal in the vicinity of structural variant (SV) breakpoints, aims to boost development of computational tools and algorithms for discovery of genomic rearrangement events from sequencing data. SVs are a dominant force shaping genomes and substantially contributing to genetic diversity. Still, there are challenges in reliable and efficient genotyping of SVs from whole genome sequencing data, thus delaying translation into clinical applications and wasting valuable resources. SWaveform includes a database containing ~7 M of read depth profiles at SV breakpoints extracted from 911 sequencing samples generated by the Human Genome Diversity Project, generalised patterns of the signal at breakpoints, an interface for navigation and download, as well as a toolbox for local deployment with user's data. The dataset can be of immense value to bioinformatics and engineering communities as it empowers smooth application of intelligent signal processing and machine learning techniques for discovery of genomic rearrangement events and thus opens the floodgates for development of innovative algorithms and software.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Análisis de Secuencia de ADN/métodos , Genómica , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA