Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(10): e202317094, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38236628

RESUMEN

Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107  Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107  Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.

2.
Angew Chem Int Ed Engl ; 62(5): e202215893, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36469012

RESUMEN

Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.

3.
J Am Chem Soc ; 143(33): 13082-13090, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34388339

RESUMEN

Achieving sophisticated juxtaposition of geared molecular rotors with negligible energy-requirements in solids enables fast yet controllable and correlated rotary motion to construct switches and motors. Our endeavor was to realize multiple rotors operating in a MOF architecture capable of supporting fast motional regimes, even at extremely cold temperatures. Two distinct ligands, 4,4'-bipyridine (bipy) and bicyclo[1.1.1]pentanedicarboxylate (BCP), coordinated to Zn clusters fabricated a pillar-and-layer 3D array of orthogonal rotors. Variable temperature XRD, 2H solid-echo, and 1H T1 relaxation NMR, collected down to a temperature of 2 K revealed the hyperfast mobility of BCP and an unprecedented cascade mechanism modulated by distinct energy barriers starting from values as low as 100 J mol-1 (24 cal mol-1), a real benchmark for complex arrays of rotors. These rotors explored multiple configurations of conrotary and disrotary relationships, switched on and off by thermal energy, a scenario supported by DFT modeling. Furthermore, the collective bipy-ring rotation was concerted with the framework, which underwent controllable swinging between two arrangements in a dynamical structure. A second way to manipulate rotors by external stimuli was the use of CO2, which diffused through the open pores, dramatically changing the global rotation mechanism. Collectively, the intriguing gymnastics of multiple rotors, devised cooperatively and integrated into the same framework, gave the opportunity to engineer hypermobile rotors (107 Hz at 4 K) in machine-like double ligand MOF crystals.

4.
Inorg Chem ; 58(13): 8257-8262, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31180650

RESUMEN

We report a flexible metal-organic framework, [Co2(OBA)2(BPMP)] n (COB), with a new network topology. COB displays structural flexibility under CO2 gas pressure at 298 K, and the resultant porous phases have been characterized by in situ X-ray diffraction analysis. We show that activation yields a framework with discrete voids and substantial reduction in guest-accessible volume. Single-crystal X-ray diffraction analysis under controlled CO2 pressure shows that COB exhibits a breathing mode of flexibility, combined with an overall swelling of the framework. This combination of mechanisms is highly unusual.

5.
Angew Chem Int Ed Engl ; 58(41): 14472-14476, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31418497

RESUMEN

A cyclic hexapeptide with three pyridyl moieties connected to its backbone forms a hydrogen-bonded dimer, which tightly encapsulates a single xenon atom, like a pearl in its shell. The dimer imprints its shape and symmetry to the captured xenon atom, as demonstrated by 129 Xe NMR spectroscopy, single-crystal X-ray diffraction, and computational studies. The dimers self-assemble hierarchically into tubular structures to form a porous supramolecular architecture, whose cavities are filled by small molecules and gases.

6.
J Am Chem Soc ; 139(16): 5923-5929, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28359156

RESUMEN

Two isoreticular three-dimensional copper(II) glutarate-based pillared-layered metal-organic frameworks (MOFs) with flexible pillars, [Cu2(glu)2(bpa)] and [Cu2(glu)2(bpp)] (bpa = 1,2-bis(4-pyridyl)ethane; bpp = 1,3-bis(4-pyridyl)propane), undergo spontaneous phase changes upon solvent loss at room temperature. Using single-crystal X-ray diffraction analysis (SCXRD), we show that the phase changes result in new narrow-channel forms that experience a large reduction in solvent-accessible volume. Moreover, the [Cu2(glu)2(bpa)] MOF displays a stepped sorption isotherm for the uptake of CO2 at room temperature. This is indicative of reversion of the framework to the wide-channel form under CO2 pressure. Supercritical CO2 was used to isolate the gas-included structures, and by means of SCXRD we were able to determine the positions of the CO2 molecules in the channels of the frameworks. Finally, we report the use of molecular modeling simulations to elucidate the phase-change mechanism, including the energetic changes involved. Structural limitations in both MOFs allow for only direct gauche-gauche enantiomeric interconversion of the glutarate moieties.

7.
Angew Chem Int Ed Engl ; 56(30): 8874-8878, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28597515

RESUMEN

A non-interpenetrated metal-organic framework with a paddle-wheel secondary building unit has been activated by direct thermal evacuation, guest exchange with a volatile solvent, and supercritical CO2 drying. Conventional thermal activation yields a mixture of crystalline phases and some amorphous content. Exchange with a volatile solvent prior to vacuum activation produces a pure breathing phase with high sorption capacity, selectivity for CO2 over N2 and CH4 , and substantial hysteresis. Supercritical drying can be used to access a guest-free open phase. Pressure-resolved differential scanning calorimetry was used to confirm and investigate a systematic loss of sorption capacity by the breathing phase as a function of successive cycles of sorption and desorption. A corresponding loss of sample integrity was not detectable by powder X-ray diffraction analysis. This may be an important factor to consider in cases where flexible MOFs are earmarked for industrial applications.

8.
Angew Chem Int Ed Engl ; 55(42): 13271-13275, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27634364

RESUMEN

A dynamic ZnII -MOF has been shown to exhibit extreme breathing behavior under gas pressure. The very narrow pore form of the activated framework opens up in the presence of carbon dioxide, thus making it a suitable material for CO2 capture. Sorption of CO2 at 298 K and relatively high pressure clearly shows a two-step isotherm with giant hysteresis for the second step. In-situ single-crystal diffraction analysis was carried out under CO2 gas pressure at 298 K using an environmental gas cell in order to visualize the interaction between CO2 and the host framework. The results are well supported by pressure-gradient differential scanning calorimetry (P-DSC) and variable-pressure powder X-ray analysis. Theoretical calculations have been carried out in order to further back up the crystallographic data.

9.
Angew Chem Int Ed Engl ; 54(7): 2079-83, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25581475

RESUMEN

A systematic study is presented of three closely related microporous metal-organic frameworks the pore dimensions of which vary according to the choice of 4,4'-bipyridyl linker. The tunable linker allows exploration of the effect of increasing pore dimensions on the sorption behavior of the frameworks. The MOFs described capture CO2 under supercritical conditions and continue to sequester the gas under ambient conditions. Gas sorption isotherms for CO2 are compared with thermogravimetric data, and the CO2 molecules in the channels of the frameworks could be modeled using single-crystal X-ray diffraction analysis. Crystallographic data were used to construct a theoretical model based on DFT methods to calculate framework electrostatic potential maps with a view to understanding the nature of the sorbate-sorbent interactions.

10.
J Am Chem Soc ; 136(10): 3776-9, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24555817

RESUMEN

A known doubly interpenetrated metal-organic framework with the formula [Zn2(ndc)2(bpy)] possesses minimal porosity when activated. We show not only that the material converts to its triply interpenetrated analogue upon desolvation, but also that the transformation occurs in a single-crystal to single-crystal manner under ambient conditions. The mechanism proposed for the conversion is supported by computational methods and by analogy with the solid-state behavior of an analogous system.

11.
Nat Commun ; 13(1): 3504, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715391

RESUMEN

Large Stokes shift fast emitters show a negligible reabsorption of their luminescence, a feature highly desirable for several applications such as fluorescence imaging, solar-light managing, and fabricating sensitive scintillating detectors for medical imaging and high-rate high-energy physics experiments. Here we obtain high efficiency luminescence with significant Stokes shift by exploiting fluorescent conjugated acene building blocks arranged in nanocrystals. Two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating crystalline hetero-ligand metal-organic framework (MOF) nanocrystals. The diffusion of singlet excitons within the MOF and the matching of ligands absorption and emission properties enables an ultrafast activation of the low energy emission in the 100 ps time scale. The hybrid nanocrystals show a fluorescence quantum efficiency of ~60% and a Stokes shift as large as 750 meV (~6000 cm-1), which suppresses the emission reabsorption also in bulk devices. The fabricated prototypal nanocomposite fast scintillator shows benchmark performances which compete with those of some inorganic and organic commercial systems.

12.
Nat Chem ; 12(9): 845-851, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632187

RESUMEN

The solid state is typically not well suited to sustaining fast molecular motion, but in recent years a variety of molecular machines, switches and rotors have been successfully engineered within porous crystals and on surfaces. Here we show a fast-rotating molecular rotor within the bicyclopentane-dicarboxylate struts of a zinc-based metal-organic framework-the carboxylate groups anchored to the metal clusters act as an axle while the bicyclic unit is free to rotate. The three-fold bipyramidal symmetry of the rotator conflicts with the four-fold symmetry of the struts within the cubic crystal cell of the zinc metal-organic framework. This frustrates the formation of stable conformations, allowing for the continuous, unidirectional, hyperfast rotation of the bicyclic units with an energy barrier of 6.2 cal mol-1 and a high frequency persistent for several turns even at very low temperatures (1010 Hz below 2 K). Using zirconium instead of zinc led to a different metal cluster-carboxylate coordination arrangement in the resulting metal-organic framework, and much slower rotation of the bicyclic units.

13.
ChemSusChem ; 13(1): 102-105, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31702877

RESUMEN

Enthalpy of sorption (ΔH) is an important parameter for the design of separation processes using adsorptive materials. A pressure-ramped calorimetric method is described and tested for the direct determination of ΔH values. Combining a heatflow thermogram with a single sorption isotherm enables the determination of ΔH as a function of loading. The method is validated by studying CO2 sorption by the well-studied metal-organic framework Cu-HKUST over a temperature range of 288-318 K. The measured ΔH values compare well with previously reported data determined by using isosteric and calorimetric methods. The pressure-gradient differential scanning calorimetry (PGDSC) method produces reliable high-resolution results by direct measurement of the enthalpy changes during the sorption processes. Additionally, PGDSC is less labor-intensive and time-consuming than the isosteric method and offers detailed insight into how ΔH changes over a given loading range.

14.
Adv Mater ; 31(40): e1903309, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31441141

RESUMEN

The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation (sTTA) upconversion is emerging as the most promising wavelength-shifting methodology because it operates efficiently at excitation powers as low as the solar irradiance. However, the production of solid-state upconverters suited for direct integration in devices is still an ongoing challenge owing to the difficulties concerning the organization of two complementary moieties, the triplet sensitizer, and the annihilator, which must interact efficiently. This problem is solved by fabricating porous fluorescent nanoparticles wherein the emitters are integrated into robust covalent architectures. These emitting porous aromatic framework (ePAF) nanoparticles allow intimate interaction with the included metallo-porphyrin as triplet sensitizers. Remarkably, the high concentration of framed chromophores ensures hopping-mediated triplet diffusion required for TTA, yet the low density of the framework promotes their high optical features without quenching effects, typical of the solid state. A green-to-blue photon upconversion yield as high as 15% is achieved: a record performance among annihilators in a condensed phase. Furthermore, the engineered ePAF architecture containing covalently linked sensitizers produces full-fledge solid-state bicomponent particles that behave as autonomous nanodevices.

15.
Chem Commun (Camb) ; 53(41): 5618-5621, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28480468

RESUMEN

A one-dimensional porous coordination polymer (PCP) {[Cu2(acetate)2(3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine)]·2CHCl3}n possesses pleochroic properties. Solvent exchange with acetonitrile and nitromethane reveals that single crystals of the PCP are also solvatochromic, with the solvent exchange process occurring in an unexpected double V-shaped pattern. Crystal surface adsorption modeling shows that the origin of this effect is preferential sorption at two faces of the crystal.

16.
Chem Commun (Camb) ; 50(32): 4238-41, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24633431

RESUMEN

A nitromethane solvate of 18-crown-6 was investigated by means of variable-temperature single-crystal X-ray diffraction in response to a report of abnormal unit cell contraction. Exceptionally large positive thermal expansion in two axial directions and negative thermal expansion along the third was confirmed. The underlying mechanism relies exclusively on weak electrostatic interactions to yield a linear thermal expansion coefficient of -129 × 10(-6) K(-1), the largest negative value yet observed for an organic inclusion compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA