Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomed Eng Lett ; 11(2): 107-115, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34150347

RESUMEN

Elaborate electrodes that enable adhesion to the skin surface and effectively collect vital signs are necessitated. In recent years, various electrode materials and novel structures have been developed, and they have garnered scientific attention due to their higher sensing performances compared with those of conventional electrode-based sensors. This paper provides an overview of recent advances in biomedical sensors, focusing on the development of novel electrodes. We comprehensively review the different types of electrode materials in the context of efficient biosignal detection, with respect to material composition for flexible and wearable electrodes and novel electrode structures. Finally, we discuss recent packaging technologies in biomedical applications using flexible and wearable electrodes.

2.
IEEE Trans Biomed Circuits Syst ; 11(6): 1204-1215, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29293418

RESUMEN

We present a sub-mm3, fully wireless, implantable intraocular pressure monitor microsystem (IMM) that comprises a powering coil, an antenna, a piezoresistive micro-electro-mechanical system pressure sensor, and a pressure sensing IC. The system provides a 24-h intraocular pressure monitoring, which is not possible with currently used tonometric measurements. The IMM volume is limited to 0.38 mm3 (4 × smaller than previous state-of-the-art) for the studies on laboratory rodents prior to human use. A cavity resonator magnetic coupling delivers the wireless power to the chip with 4.89% efficiency. The chip senses a change in a differential sensor resistance by providing a low-power differential resistance to frequency conversion with the measured standard deviation in differential resistance sensing of . The data packets are wirelessly transmitted by an ultralow power 2.4-GHz ISM band OOK transmitter. The IMM is integrated on a 5-µm-thick biocompatible Parylene C substrate. Implemented in a 0.18-µm CMOS process, the system achieves 0.67-mmHg pressure sensitivity with differential resistance sensing and dissipates only 6.3 nW with 30 min of measurement intervals. We verify the IMM functionality in the in vivo biological experiment.


Asunto(s)
Presión Intraocular/fisiología , Monitoreo Fisiológico/métodos , Tonometría Ocular/métodos , Humanos , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA