Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arthritis Rheumatol ; 75(8): 1344-1356, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36862144

RESUMEN

OBJECTIVE: CD28 and inducible T cell costimulator (ICOS) appear to have nonredundant roles in T cell activation and adaptive immunity. We undertook this study to characterize in vitro and in vivo the therapeutic potential of acazicolcept (ALPN-101), an Fc fusion protein of a human variant ICOS ligand (ICOSL) domain designed to inhibit both CD28 and ICOS costimulation, in inflammatory arthritis. METHODS: Acazicolcept was compared in vitro with inhibitors of either the CD28 or ICOS pathways (abatacept and belatacept [CTLA-4Ig], prezalumab [anti-ICOSL monoclonal antibody]) in receptor binding and signaling assays, and in a collagen-induced arthritis (CIA) model. Acazicolcept was also compared in cytokine and gene expression assays of peripheral blood mononuclear cells (PBMCs) from healthy donors or rheumatoid arthritis (RA) or psoriatic arthritis (PsA) patients stimulated with artificial antigen-presenting cells (APCs) expressing CD28 and ICOS ligands*. RESULTS: Acazicolcept bound CD28 and ICOS, prevented ligand binding, and inhibited human T cell functional interactions, matching or exceeding the activity of CD28 or ICOS costimulatory single-pathway inhibitors tested individually or in combination. Acazicolcept administration significantly reduced disease in the CIA model and more potently than abatacept. Acazicolcept also inhibited proinflammatory cytokine production from stimulated PBMCs in cocultures with artificial APCs and demonstrated unique effects on gene expression distinct from those induced by abatacept, prezalumab, or a combination of both. CONCLUSION: Both CD28 and ICOS signaling play critical roles in inflammatory arthritis. Therapeutic agents such as acazicolcept that coinhibit both ICOS and CD28 signaling may mitigate inflammation and/or disease progression in RA and PsA more effectively than inhibitors of either pathway alone.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Humanos , Antígenos CD28/metabolismo , Abatacept/farmacología , Abatacept/uso terapéutico , Leucocitos Mononucleares/metabolismo , Ligandos , Proteína Coestimuladora de Linfocitos T Inducibles , Linfocitos T , Factores Inmunológicos , Artritis Reumatoide/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Citocinas
2.
Arthritis Rheumatol ; 75(7): 1187-1202, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36705554

RESUMEN

OBJECTIVE: Dysregulated APRIL/BAFF signaling is implicated in the pathogenesis of multiple autoimmune diseases, including systemic lupus erythematosus and lupus nephritis. We undertook this study to develop and evaluate a high-affinity APRIL/BAFF antagonist to overcome the clinical limitations of existing B cell inhibitors. METHODS: A variant of TACI-Fc generated by directed evolution showed enhanced binding for both APRIL and BAFF and was designated povetacicept (ALPN-303). Povetacicept was compared to wild-type (WT) TACI-Fc and related molecules in vitro and in vivo. RESULTS: Povetacicept inhibited APRIL and BAFF more effectively than all evaluated forms of WT TACI-Fc and selective APRIL and BAFF inhibitors in cell-based reporter assays and primary human B cell assays, mediating potent suppression of B cell proliferation, differentiation, and immunoglobulin (Ig) secretion. In mouse immunization models, povetacicept significantly reduced serum immunoglobulin titers and antibody-secreting cells more effectively than anti-CD20 monoclonal antibodies, WT TACI-Fc, or APRIL and BAFF inhibitors. In the NZB × NZW mouse lupus nephritis model, povetacicept significantly enhanced survival and suppressed proteinuria, anti-double-stranded DNA antibody titers, blood urea nitrogen, glomerulonephritis, and renal immunoglobulin deposition. In the bm12 mouse lupus model, povetacicept significantly reduced splenic plasmablasts, follicular helper T cells, and germinal center B cells. In non-human primates, povetacicept was well tolerated, exhibited high serum exposure, and significantly decreased serum IgM, IgA, and IgG levels after a single dose. CONCLUSION: Enhanced APRIL and BAFF inhibition by povetacicept led to greater inhibition of B cell populations critical for autoantibody production compared to WT TACI-Fc and CD20-, APRIL-, or BAFF-selective inhibitors. Potent, dual inhibition by povetacicept has the potential to significantly improve clinical outcomes in autoantibody-related autoimmune diseases.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Animales , Humanos , Autoanticuerpos , Factor Activador de Células B/genética , Linfocitos B , Ratones Endogámicos
3.
J Struct Funct Genomics ; 12(2): 63-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21359640

RESUMEN

As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/enzimología , Liasas de Fósforo-Oxígeno/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Ligandos , Espectroscopía de Resonancia Magnética
4.
Artículo en Inglés | MEDLINE | ID: mdl-21904049

RESUMEN

Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=72.39, b=127.71, c=157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site.


Asunto(s)
Bartonella henselae/enzimología , Fructosa-Bifosfato Aldolasa/química , Fructosadifosfatos/química , Cristalografía por Rayos X , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
5.
Artículo en Inglés | MEDLINE | ID: mdl-21904050

RESUMEN

Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO(4), 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml(-1) and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C222(1), with unit-cell parameters a=121.46, b=135.82, c=61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C222(1) and the unit-cell parameters were a=121.96, b=137.61, c=62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA.


Asunto(s)
Encephalitozoon cuniculi/enzimología , Fructosa-Bifosfato Aldolasa/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
6.
Artículo en Inglés | MEDLINE | ID: mdl-21904042

RESUMEN

The establishment of an efficient and reliable protein-purification pipeline is essential for the success of structural genomic projects. The SSGCID Protein Purification Group at the University of Washington (UW-PPG) has established a robust protein-purification pipeline designed to purify 400 proteins per year at a rate of eight purifications per week. The pipeline was implemented using two ÄKTAexplorer 100 s and four ÄKTAprimes to perform immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. Purifications were completed in a period of 5 d and yielded an average of 53 mg highly purified protein. This paper provides a detailed description of the methods used to purify, characterize and store SSGCID proteins. Some of the purified proteins were treated with 3C protease, which was expressed and purified by UW-PPG using a similar protocol, to cleave non-native six-histidine tags. The cleavage was successful in 94% of 214 attempts. Cleaved proteins yielded 2.9% more structures than uncleaved six-histidine-tagged proteins. This 2.9% improvement may seem small, but over the course of the project the structure output from UW-PPG is thus predicted to increase from 260 structures to 318 structures. Therefore, the outlined protocol with 3C cleavage and subtractive IMAC has been shown to be a highly efficient method for the standardized purification of recombinant proteins for structure determination via X-ray crystallography.


Asunto(s)
Genómica , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Enfermedades Transmisibles , Proteínas/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-21904046

RESUMEN

Phosphopantetheine adenylyltransferase (PPAT) catalyzes the fourth of five steps in the coenzyme A biosynthetic pathway, reversibly transferring an adenylyl group from ATP onto 4'-phosphopantetheine to yield dephospho-coenzyme A and pyrophosphate. Burkholderia pseudomallei is a soil- and water-borne pathogenic bacterium and the etiologic agent of melioidosis, a potentially fatal systemic disease present in southeast Asia. Two crystal structures are presented of the PPAT from B. pseudomallei with the expectation that, because of the importance of the enzyme in coenzyme A biosynthesis, they will aid in the search for defenses against this pathogen. A crystal grown in ammonium sulfate yielded a 2.1 Å resolution structure that contained dephospho-coenzyme A with partial occupancy. The overall structure and ligand-binding interactions are quite similar to other bacterial PPAT crystal structures. A crystal grown at low pH in the presence of coenzyme A yielded a 1.6 Å resolution structure in the same crystal form. However, the experimental electron density was not reflective of fully ordered coenzyme A, but rather was only reflective of an ordered 4'-diphosphopantetheine moiety.


Asunto(s)
Burkholderia pseudomallei/enzimología , Nucleotidiltransferasas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1106-12, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904058

RESUMEN

The crystal structure of a ß-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein.


Asunto(s)
Brucella melitensis/enzimología , beta-Lactamasas/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
9.
Anal Biochem ; 399(2): 268-75, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20018159

RESUMEN

This study sought to determine whether the quality of enzyme preparations can be determined from their melting curves, which may easily be obtained using a fluorescent probe and a standard reverse transcription-polymerase chain reaction (RT-PCR) machine. Thermal melt data on 31 recombinant enzymes from Plasmodium parasites were acquired by incrementally heating them to 90 degrees C and measuring unfolding with a fluorescent dye. Activity assays specific to each enzyme were also performed. Four of the enzymes were denatured to varying degrees with heat and sodium dodecyl sulfate (SDS) prior to the thermal melt and activity assays. In general, melting curve quality was correlated with enzyme activity; enzymes with high-quality curves were found almost uniformly to be active, whereas those with lower quality curves were more varied in their catalytic performance. Inspection of melting curves of bovine xanthine oxidase and Entamoeba histolytica cysteine protease 1 allowed active stocks to be distinguished from inactive stocks, implying that a relationship between melting curve quality and activity persists over a wide range of experimental conditions and species. Our data suggest that melting curves can help to distinguish properly folded proteins from denatured ones and, therefore, may be useful in selecting stocks for further study and in optimizing purification procedures for specific proteins.


Asunto(s)
Enzimas/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Bovinos , Proteasas de Cisteína/química , Entamoeba histolytica/enzimología , Pruebas de Enzimas , Colorantes Fluorescentes/química , Calor , Transición de Fase , Plasmodium/enzimología , Desnaturalización Proteica , Dodecil Sulfato de Sodio/química , Xantina Oxidasa/química
10.
J Biomol Screen ; 14(6): 700-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19470714

RESUMEN

In the past decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. The authors present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES [pH 7.5], 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. The authors conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal.


Asunto(s)
Bioensayo/métodos , Plasmodium/química , Proteínas Protozoarias/química , Bibliotecas de Moléculas Pequeñas/análisis , Temperatura de Transición , Animales , Tampones (Química) , Ligandos
11.
Mol Biochem Parasitol ; 175(1): 21-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20813141

RESUMEN

The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25µM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Enzimas/metabolismo , Concentración 50 Inhibidora , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/antagonistas & inhibidores
12.
ACS Med Chem Lett ; 1(7): 331-335, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21116453

RESUMEN

The protozoans Cryptosporidium parvum and Toxoplasma gondii are parasites of major health concern to humans. Both parasites contain a group of calcium-dependent protein kinases (CDPKs), which are found in plants and ciliates but not in humans or fungi. Here we describe a series of potent inhibitors that target CDPK1 in C. parvum (CpCDPK1) and T. gondii (TgCDPK1). These inhibitors are highly selective for CpCDPK1 and TgCDPK1 over the mammalian kinases SRC and ABL. Furthermore, they are able to block an early stage of C. parvum invasion of HCT-8 host cells, which is similar to their effects on T. gondii invasion of human fibroblasts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA