Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biophys J ; 121(13): 2568-2582, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35644946

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is an RNA-regulating protein that carries out many cellular functions through liquid-liquid phase separation (LLPS). The LLPS of TDP-43 is mediated by its C-terminal low-complexity domain (TDP43-LCD) corresponding to the region 267-414. In neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia, pathological inclusions of the TDP-43 are found that are rich in the C-terminal fragments of ∼25 and ∼35 kDa, of which TDP43-LCD is a part. Thus, understanding the assembly process of TDP43-LCD is essential, given its involvement in the formation of both functional liquid-like assemblies and solid- or gel-like pathological aggregates. Here, we show that the solution pH and salt modulate TDP43-LCD LLPS. A gradual reduction in the pH below its isoelectric point of 9.8 results in a monotonic decrease of TDP43-LCD LLPS due to charge-charge repulsion between monomers, while at pH 6 and below no LLPS was observed. The addition of heparin to TDP43-LCD solution at pH 6, at a 1:2 heparin-to-TDP43-LCD molar ratio, promotes TDP43-LCD LLPS, while at higher concentration, it disrupts LLPS through a reentrant phase transition. Upon incubation at pH 6, TDP43-LCD undergoes gelation without phase separation. However, in the reentrant regime in the presence of a high heparin concentration, it forms thick amyloid aggregates that are significantly more SDS resistant than the gel. The results indicate that the material nature of the TDP43-LCD assembly products can be modulated by heparin which is significant in the context of liquid-to-solid phase transition observed in TDP-43 proteinopathies. Our findings are also crucial in relation to similar transitions that could occur due to alteration in the molecular level interactions among various multivalent biomolecules involving other LCDs and RNAs.


Asunto(s)
Amiloide , Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Heparina , Humanos , Transición de Fase
2.
Biochemistry ; 57(26): 3830-3848, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29851342

RESUMEN

The human synuclein (syn) family is comprised of α-, ß-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). ß- and γ-syn are absent in LB, and their exact role is still enigmatic. ß-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while ß-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of ß-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of ß- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and ß-syn, ß- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between ß-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.


Asunto(s)
Proteínas de Neoplasias/química , alfa-Sinucleína/química , Sinucleína beta/química , gamma-Sinucleína/química , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Proteínas de Neoplasias/metabolismo , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , Dominios Proteicos , Resonancia por Plasmón de Superficie , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo , gamma-Sinucleína/metabolismo
3.
Chembiochem ; 19(2): 159-170, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29105927

RESUMEN

The effect of resveratrol, a polyphenol in red wine, on the amyloid fibril formation of human lysozyme (HuL) was investigated, towards elucidating the mechanism of resveratrol action and probing its role as a possible modulator of lysozyme aggregation and toxicity. By using a number of biophysical tools, resveratrol was observed to alter the fibrillization kinetics of HuL and inhibit its fibrillization by binding with weak to moderate affinity to the conformations populated at the early stages of the pathway with concomitant stabilization of these initial conformations. The marginal decrease in the lifetime of HuL in the presence of resveratrol by time-resolved fluorescence measurements indicated the involvement of a static quenching mechanism in the interaction between HuL and resveratrol. Docking studies predicted the binding of resveratrol to aggregation-prone regions in HuL, and structure and activity analyses demonstrated the retention of much of the α-helical structure and activity of HuL in the presence of resveratrol. Resveratrol modulated the fibrillization pathway towards less-hydrophobic, less-toxic, off-pathway aggregates. These results demonstrate that binding of resveratrol to HuL could protect against the formation of pathogenic, cytotoxic aggregates formed in amyloidogenic disorders, such as systemic amyloidosis; thus suggesting its potential as a plausible therapeutic agent against lysozyme amyloidosis.


Asunto(s)
Muramidasa/química , Muramidasa/metabolismo , Resveratrol/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Resveratrol/química
4.
Biochim Biophys Acta Proteins Proteom ; 1866(10): 1029-1042, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003969

RESUMEN

Polyol osmolytes accumulated in cells under stress are known to promote stability in globular proteins with respect to their increasing hydroxyl groups but their effect on the structure, stability and aggregation of intrinsically disordered proteins (IDPs) is still elusive. The lack of a natively folded structure in intrinsically disordered proteins under physiological conditions results in their aggregation and fibrillation that gives rise to a number of diseases. We have investigated the effect of a series of polyols, ethylene glycol (EG), glycerol, erythritol, xylitol and sorbitol on the fibrillation pathway of recombinant human γ-Synuclein, used as a model, for an IDP known to form fibrils that play a role in neurodegeneration and cancer. With an increase in the number of -OH groups in polyols except EG, we observe a decrease in lag time for fibrillation at equimolar concentrations, suggesting stronger preferential exclusion of polyols that promotes γ-Syn self-association and oligomerization. The polyols act early during nucleation and their diverse effect on the rate of fibrillation suggests the role of favourable solvent-side chain interactions. With increasing -OH group, polyols stabilize the natively unfolded conformation of γ-Syn under non-fibrillating conditions and delay the structural transition to characteristic ß-sheet structure by forming an α-helical intermediate during fibrillation. The results, overall suggest that the effect of osmolytes on IDPs is much more complex than their effect on globular protein stability and aggregation and a fine balance between the dominant unfavourable osmolyte-peptide backbone and favourable osmolyte-charged side chain interactions would govern their stability and aggregation properties.


Asunto(s)
Polímeros/metabolismo , gamma-Sinucleína/metabolismo , Dicroismo Circular , Glicol de Etileno/química , Glicol de Etileno/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Polímeros/química , Agregado de Proteínas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Sorbitol/química , Sorbitol/metabolismo , gamma-Sinucleína/química , gamma-Sinucleína/genética
5.
J Biol Chem ; 290(4): 1979-93, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25451928

RESUMEN

Heme proteins, which reversibly bind oxygen and display a particular fold originally identified in myoglobin (Mb), characterize the "hemoglobin (Hb) superfamily." The long known and widely investigated Hb superfamily, however, has been enriched by the discovery and investigation of new classes and members. Truncated Hbs typify such novel classes and exhibit a distinct two-on-two α-helical fold. The truncated Hb from the freshwater cyanobacterium Synechocystis exhibits hexacoordinate heme chemistry and bears an unusual covalent bond between the nonaxial His(117) and a heme porphyrin 2-vinyl atom, which remains tightly associated with the globin unlike any other. It seems to be the most stable Hb known to date, and His(117) is the dominant force holding the heme. Mutations of amino acid residues in the vicinity did not influence this covalent linkage. Introduction of a nonaxial His into sperm whale Mb at the topologically equivalent position and in close proximity to vinyl group significantly increased the heme stability of this prototype globin. Reversed phase chromatography, electrospray ionization-MS, and MALDI-TOF analyses confirmed the presence of covalent linkage in Mb I107H. The Mb mutant with the engineered covalent linkage was stable to denaturants and exhibited ligand binding and auto-oxidation rates similar to the wild type protein. This indeed is a novel finding and provides a new perspective to the evolution of Hbs. The successful attempt at engineering heme stability holds promise for the production of stable Hb-based blood substitute.


Asunto(s)
Histidina/química , Mioglobina/química , Ingeniería de Proteínas/métodos , Synechocystis/química , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Hemo/química , Hemoglobinas/química , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Hemoglobinas Truncadas/química
6.
Neurobiol Dis ; 63: 115-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24269918

RESUMEN

Parkinson's disease is characterized by the deposition of aggregated α-syn and its familial mutants into Lewy bodies leading to death of dopaminergic neurons. α-syn is involved in Ca(II) and dopamine (DA) signaling and their adequate balance inside neuronal cytoplasm is essential for maintaining healthy dopaminergic neurons. We have probed the binding energetics of Ca(II) and DA to human α-syn and its familial mutants A30P, A53T and E46K using isothermal titration calorimetry and have investigated the conformational and aggregation aspects using circular dichroism and fluorescence spectroscopy. While binding of Ca(II) to α-syn and its familial mutants was observed to be endothermic in nature, interaction of DA with α-syn was not detectable. Ca(II) enhanced fibrillation of α-syn and its familial mutants while DA promoted the formation of oligomers. However, Ca(II) and DA together critically favored the formation of protofibrils that are more cytotoxic than the mature fibrils. Using fluorescently labeled cysteine mutant A90C, we have shown that different aggregating species of α-syn formed in the presence of Ca(II) and DA are internalized into the human neuroblastoma cells with different rates and are responsible for the differential cytotoxicity depending on their nature. The findings put together suggest that an interplay between the concentrations of Ca(II), DA and α-syn can critically regulate the formation of various aggregating species responsible for the survival of dopaminergic neurons. Modulating this balance leading to either complete suppression of α-syn aggregation or promoting the formation of mature fibrils could be used as a strategy for the development of drugs to cure Parkinson's disease.


Asunto(s)
Calcio/farmacología , Dopamina/farmacología , alfa-Sinucleína/metabolismo , Calcio/metabolismo , Calorimetría , Línea Celular Tumoral , Dicroismo Circular , Dopamina/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación/genética , Neuroblastoma/patología , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/genética , Termodinámica , Transfección , Tirosina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura
7.
ACS Chem Neurosci ; 15(9): 1770-1786, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637513

RESUMEN

Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 µM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.


Asunto(s)
Masoprocol , gamma-Sinucleína , Humanos , gamma-Sinucleína/metabolismo , Masoprocol/farmacología , Agregado de Proteínas/efectos de los fármacos , Agregado de Proteínas/fisiología , Espectroscopía Infrarroja por Transformada de Fourier , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico
8.
ACS Chem Neurosci ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37011370

RESUMEN

Parkinson's disease (PD) is characterized by progressive degeneration of the dopaminergic neurons in the brain, accompanied by the accumulation of proteinaceous inclusions, Lewy bodies (LB), mainly comprised of alpha synuclein (α-syn) aggregates. The heterogeneity and the transient nature of the intermediate species formed in the α-syn fibrillation pathway have made it difficult to develop an effective therapeutic intervention. Therefore, any therapeutic molecule that could prevent as well as treat PD would be of great interest. Anthocyanidins are natural flavonoid compounds that have been shown to have neuroprotective properties and to modulate factors that cause neuronal death. Herein, we have explored the modulation and inhibition of α-syn fibrillation by the anthocyanidins cyanidin, delphinidin, and peonidin using a number of biophysical and structural tools. α-Syn fibrillation monitored using thioflavin T (ThT) fluorescence and light scattering suggested concentration dependent inhibition of α-syn fibrillation by all the three anthocyanidins. While cyanidin and delphinidin induced the formation of oligomers and small fibrillar structures of α-syn, respectively, peonidin led to the formation of amorphous aggregates, as observed by Atomic Force Microscopy (AFM). Peonidin proved to be most effective of the three anthocyanidins toward alleviating cell toxicity of SH-SY5Y neuroblastoma cells at concentrations where α-synuclein fibrillation was completely suppressed. Hence, the inhibition mechanism of peonidin was further explored by studying its interaction with α-syn using titration calorimetry and molecular docking. The results show its weak binding (in mM range) to the NAC region of α-syn through hydrogen bonding interactions. Also, circular dichroism and Raman spectroscopy revealed the structural aspects of peonidin-induced α-syn amorphous aggregates showing alpha helical structures with exposed Phe and Tyr regions. Due to the neuroprotective nature of peonidin, the findings reported here are significant and can be further explored toward developing a modifying therapy that could address both disease onset as well as the progression of PD.

9.
Biochim Biophys Acta Proteins Proteom ; 1871(5): 140932, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433401

RESUMEN

Human α-, ß-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, ß-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, ß-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of ß-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Trehalosa , Humanos , gamma-Sinucleína/química , Disacáridos , alfa-Sinucleína/química , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Encéfalo/metabolismo , Chaperonas Moleculares/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140917, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061153

RESUMEN

Aggregation of neuronal protein α-synuclein is implicated in synucleinopathies, including Parkinson's disease. Despite abundant in vitro studies, the mechanism of α-synuclein assembly process remains ambiguous. In this work, α-synuclein aggregation was induced by its constant mixing in two separate modes, either by agitation in a 96-well microplate reader (MP) or in microcentrifuge tubes using a shaker incubator (SI). Aggregation in both modes occurred through a sigmoidal growth pattern with a well-defined lag, growth, and saturation phase. The end-stage MP- and SI-derived aggregates displayed distinct differences in morphological, biochemical, and spectral signatures as discerned through AFM, proteinase-K digestion, FTIR, Raman, and CD spectroscopy. The MP-derived aggregates showed irregular morphology with a significant random coil conformation, contrary to SI-derived aggregates, which showed typical ß-sheet fibrillar structures. The end-stage MP aggregates convert to ß-rich SI-like aggregates upon 1) seeding with SI-derived aggregates and 2) agitating in SI. We conclude that end-stage MP aggregates were in a kinetically trapped conformation, whose kinetic barrier was bypassed upon either seeding by SI-derived fibrils or shaking in SI. We further show that MP-derived aggregates that form in the presence of sorbitol, an osmolyte, displayed a ß-rich signature, indicating that the preferential exclusion effect of osmolytes helped overcome the kinetic barrier. Our findings help in unravelling the kinetic origin of different α-synuclein aggregated polymorphs (strains) that encode diverse variants of synucleinopathies. We demonstrate that kinetic control shapes the polymorphic landscape of α-synuclein aggregates, both through de novo generation of polymorphs, and by their interconversion.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/química , Sinucleinopatías/metabolismo , Enfermedad de Parkinson/metabolismo , Amiloide/química , Proteínas Amiloidogénicas
11.
J Biomol Struct Dyn ; 40(10): 4593-4611, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33331220

RESUMEN

The effect of two widely used polyphenols, curcumin and EGCG was investigated on the amyloid fibrillogenesis of the well-characterized model protein human lysozyme (HuL), associated with non-neuropathic systemic amyloidosis, towards exploring their efficacy as modulators of HuL amyloid aggregation and toxicity and unravelling their mechanism of action. Curcumin exerts its inhibitory influence towards HuL fibrillation by interacting with the prefibrillar and fibrillar intermediates resulting in complete suppression of fibrillation at ∼200 µM and effectively disaggregates preformed fibrils of HuL. EGCG on the other hand suppresses fibrillation only upto 70% at ∼400 µM, modulates the pathway towards large, ß-sheet rich amyloid fibril-like aggregates and modifies the preformed fibrils into similar type of large, clustered aggregate assemblies. The overall surface hydrophobicity and cytotoxicity of HuL is significantly reduced not only in the presence of curcumin but also EGCG, despite the latter forming large agglomerates, which could be accounted for by the dense and highly clustered nature of aggregates rendering their surface less exposed and thus less amenable to interact with cellular entities thereby causing reduced cellular toxicity. This study highlights the differential mechanisms employed by curcumin and ECCG in modulating the fibrillation pathway of HuL and illustrates the importance of overall modulation of fibrillation towards a general reduction in toxicity, rather than specifically focusing only on inhibition of fibrillation. This study also demonstrates how two widely different polyphenols employ disparate mechanisms to modulate the fibrillation pathway of a single protein and yet converge towards a common effect of alleviation of cytotoxicity.


Asunto(s)
Amiloidosis , Curcumina , Amiloide/metabolismo , Amiloidosis/tratamiento farmacológico , Curcumina/farmacología , Humanos , Muramidasa , Polifenoles/farmacología
12.
Biophys Rev ; 13(4): 459-484, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34471434

RESUMEN

Dr. Serge N. Timasheff, our mentor and friend, passed away in 2019. This article is a collection of tributes from his postdoctoral fellows, friends, and daughter, who all have been associated with or influenced by him or his research. Dr. Timasheff is a pioneer of research on thermodynamic linkage between ligand interaction and macromolecular reaction. We all learned a great deal from Dr. Timasheff, not only about science but also about life.

13.
Biophys Chem ; 264: 106422, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32707418

RESUMEN

Intrinsically disordered proteins (IDPs) comprise ~30-40% of the proteome, have key roles in cellular processes, and have been reported to be involved in stress regulation working in synergy with osmolytes. Osmolytes are known to accumulate against various stresses in living systems and are known to stabilize the native conformation of globular proteins. However, little is known of their effect on IDPs and their mechanism of action is unclear. We have investigated the effect of a series of polyol osmolytes on the conformation, aggregation and fibrillation properties of the IDPs α and ß-synuclein, involved in Parkinson's disease, using fluorescence, CD, light scattering and TEM. We observe inhibition of fibril and aggregate formation with increasing concentration as well as the number of hydroxyl groups in polyols as observed by light scattering measurements which correlates well with the increase in viscosity of solution with increasing number of OH groups in them. However, ThT assay, while indicating suppression of fibril formation at various concentrations of polyols, shows enhanced fibrillation at some other concentrations which could be due to the heterogeneity of the species formed that are ThT insensitive. Fibril formation was, thus, probed by using Nile red fluorescence which showed sensitivity towards the species formed. ANS binding fluorescence also indicates a decrease in the hydrophobicity of the fibrils with increasing number of OH groups in polyols. Polyols do not have any effect on the fibrillation of ß-syn but lead to enhanced amorphous aggregate formation in presence of Ethylene Glycol and Glycerol and a reduction in the presence of Sorbitol. The net free energy of transfer of the proteins from water to Sorbitol is large and positive while it is relatively negligible in the case of Glycerol suggestive of greater preferential exclusion effect of Sorbitol in comparison with Glycerol in the case of IDPs as well. The results overall show differential and complex effect of osmolytes towards the fibrillation/aggregation properties of the two IDPs and suggest that an appropriate balance between the concentration and type of polyol or osmolyte would be required for the survival of organisms rich in IDPs under various stress conditions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Estrés Oxidativo , Polímeros/química , Dicroismo Circular , Humanos , Compuestos Orgánicos/química , Pliegue de Proteína , Estabilidad Proteica , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
14.
Protein Sci ; 28(2): 382-402, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30394624

RESUMEN

Oligomerization of γ-Synuclein is known to have implications for both neurodegeneration and cancer. Although it is known to co-exist with the fibrillar deposits of α-Synuclein (Lewy bodies), a hallmark in Parkinson's disease (PD), the effect of potential therapeutic modulators on the fibrillation pathway of γ-Syn remains unexplored. By a combined use of various biophysical tools and cytotoxicity assays we demonstrate that the flavonoid epigallocatechin-3-gallate (EGCG) significantly suppresses γ-Syn fibrillation by affecting its nucleation and binds with the unstructured, nucleus forming oligomers of γ-Syn to modulate the pathway to form α-helical containing higher-order oligomers (~158 kDa and ~ 670 kDa) that are SDS-resistant and conformationally restrained in nature. Seeding studies reveal that these oligomers although "on-pathway" in nature, are kinetically retarded and rate-limiting species that slows down fibril elongation. We observe that EGCG also disaggregates the protofibrils and mature γ-Syn fibrils into similar SDS-resistant oligomers. Steady-state and time-resolved fluorescence spectroscopy and isothermal titration calorimetry (ITC) reveal a weak non-covalent interaction between EGCG and γ-Syn with the dissociation constant in the mM range (Kd ~ 2-10 mM). Interestingly, while EGCG-generated oligomers completely rescue the breast cancer (MCF-7) cells from γ-Syn toxicity, it reduces the viability of neuroblastoma (SH-SY5Y) cells. However, the disaggregated oligomers of γ-Syn are more toxic than the disaggregated fibrils for MCF-7cells. These findings throw light on EGCG-mediated modulation of γ-Syn fibrillation and suggest that investigation on the effects of such modulators on γ-Syn fibrillation is critical in identifying effective therapeutic strategies using small molecule modulators of synucleopathies.


Asunto(s)
Catequina/análogos & derivados , Núcleo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Agregado de Proteínas/efectos de los fármacos , Té/química , gamma-Sinucleína/metabolismo , Catequina/química , Catequina/farmacología , Humanos , Células MCF-7 , Estructura Secundaria de Proteína
15.
ACS Chem Neurosci ; 10(6): 2741-2755, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30917654

RESUMEN

Parkinson's disease is characterized by the deterioration of dopaminergic neurons of substantia nigra pars compacta along with a substantial loss of noradrenergic neurons of the locus coeruleus, which is the major source of noradrenaline (NA) in the brain. We have investigated the interaction of NA with α-synuclein (α-syn), the major protein constituent of Lewy bodies that are the pathological hallmark of Parkinson's disease (PD). It is expected that NA, like dopamine, could bind to α-syn and modulate its aggregation propensity and kinetics, which could also contribute to the onset of PD. We have, thus, evaluated the thermodynamic parameters of interaction of NA with α-syn monomer as well as species formed at different stages during its fibrillation pathway and have investigated the conformational and aggregation properties using various spectroscopic and calorimetric techniques. Binding isotherms of NA with α-syn species formed at different time points in the pathway have been observed to be exothermic in nature, suggesting hydrogen bonding interactions and weak affinity with binding constants in the millimolar range in all the cases. The interaction site of NA for α-syn was determined using Förster resonance energy transfer measurements that resulted in its binding in close proximity (23 Å) of an Alexa-labeled A90C mutant of α-syn. Docking studies further suggested binding of NA to the C-terminal as well as the non-amyloid-ß component (NAC) region of α-syn. We have shown that α-syn oligomerization into sodium dodecyl sulfate resistant, higher-order, ß-sheet-rich species is dependent on the oxidation of NA. Under non-reducing conditions, NA was also found to disaggregate the intermediates, populated during the fibrillation pathway, which are more cytotoxic compared to amyloid fibrils, as observed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide cytotoxicity assay using a human neuroblastoma cell line. On the basis of these and earlier data, we propose that NA-induced formation of α-syn oligomers may contribute to the progressive loss of the noradrenergic neuronal population and the pronounced Lewy body deposition observed in patients with PD.


Asunto(s)
Amiloide/química , Norepinefrina/química , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/química , Amiloide/metabolismo , Línea Celular Tumoral , Humanos , Neuronas/patología , Norepinefrina/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregado de Proteínas/fisiología , alfa-Sinucleína/metabolismo
16.
Biophys Chem ; 124(2): 90-9, 2006 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-16828962

RESUMEN

Osmolytes of the polyol series are known to accumulate in biological systems under stress and stabilize the structures of a wide variety of proteins. While increased surface tension of aqueous solutions has been considered an important factor in protein stabilization effect, glycerol is an exception, lowering the surface tension of water. To clarify this anomalous effect, the effect of a series of polyols on the thermal stability of a highly thermolabile two domain protein yeast hexokinase A has been investigated by differential scanning calorimetry and by monitoring loss in the biological activity of the enzyme as a function of time. A larger increase in the T(m) of domain 1 compared with that of domain 2, varying linearly with the number of hydroxyl groups in polyols, has been observed, sorbitol being the best stabilizer against both thermal as well as urea denaturation. Polyols help retain the activity of the enzyme considerably and a good correlation of the increase in T(m) (DeltaT(m)) and the retention of activity with the increase in the surface tension of polyol solutions, except glycerol, which breaks this trend, has been observed. However, the DeltaT(m) values show a linear correlation with apparent molal heat capacity and volume of aqueous polyol solutions including glycerol. These results suggest that while bulk solution properties contribute significantly to protein stabilization, interfacial properties are not always a good indicator of the stabilizing effect. A subtle balance of various weak binding and exclusion effects of the osmolytes mediated by water further regulates the stabilizing effect. Understanding these aspects is critical in the rational design of stable protein formulations.


Asunto(s)
Glicerol/farmacología , Hexoquinasa/química , Sorbitol/química , Agua/química , Levaduras/enzimología , Dicroismo Circular , Activación Enzimática , Desnaturalización Proteica , Soluciones/química , Relación Estructura-Actividad , Termodinámica
17.
Int J Mycobacteriol ; 5 Suppl 1: S92-S93, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28043637

RESUMEN

OBJECTIVE/BACKGROUND: Bacterial persistence is the hallmark of tuberculosis (TB) and poses the biggest threat to the success of any antitubercular drug regimen. The DevR/DosR dormancy regulator of Mycobacterium tuberculosis belongs to the NarL subfamily of response regulators and is essential for M. tuberculosis persistence in macaque models of TB. The DevR/DosR crystal structure revealed a unique (αß)4 topology instead of the classical (αß)5 structure found in the receiver domain of other regulators in this subfamily. It was proposed that phosphorylation may culminate in the formation of a DNA-binding-competent dimeric species via α10-α10 helix interactions. Here, we deciphered the role of the α10 helix in activation of the DevR/DosR response regulator in M. tuberculosis. METHODS: Wild-type (WT) and mutant DevR [α10-helix-deleted DevR (DevRΔα10)] proteins were cloned in suitable plasmids and expressed in Escherichia coli and M. tuberculosis strains. An in vitro phosphorylation assay was performed using acetyl phosphate, and the dimeric/oligomeric status of WT DevR and mutant proteins in the presence or absence of phosphorylation was assessed by glutaraldehyde-based in vitro cross-linking, followed by western blot analysis. Additionally, recombinant M. tuberculosis strains expressing WT and mutant DevR proteins were assessed for dormancy regulon gene expression under aerobic and hypoxic conditions by western blot analysis. An electrophoretic mobility shift assay was performed to assess the in vitro DNA-binding activity of DevR proteins to the target DNA, and biophysical characterization was performed using circular dichroism spectroscopy, fluorescence spectroscopy, and thermal shift assays. RESULTS: Our results revealed that DevR structure and activity are modulated by phosphorylation-dependent α10 helix dimerization. In its hyperphosphorylated state, DevRΔα10 is defective in DNA binding and exhibits an open and less stable conformation. The combined results of in vitro cross-linking and genetic analysis established an essential role for the α10 helix in postphosphorylation dimerization of DevR and gene activation. The importance of the α10 helix for dormancy regulon induction in M. tuberculosis established the α10-α10 helix interaction as a novel target in the DevR-signaling pathway for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy. CONCLUSION: This study established the importance of the α10 helix for DevR activation in M. tuberculosis and proposed a novel molecular tool to screen small-molecule inhibitors targeting dimerization of DevR in the absence (inactive state) or presence of phosphorylation (active state) to combat latent TB infection. This concept can be extended to screen inhibitors against response regulators where dimerization is crucial for their activation.

18.
FEBS J ; 283(7): 1286-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26799615

RESUMEN

The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA-binding competent dimeric species via α10-α10 helix interactions. The α10 helix-deleted DevR protein (DevR∆α10 ) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross-linking and DNA-binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA-binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10-α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Quinasas/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Western Blotting , Dicroismo Circular , ADN Bacteriano/genética , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium tuberculosis/genética , Fosforilación , Unión Proteica , Pliegue de Proteína , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Temperatura
19.
Biochimie ; 94(4): 947-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22203099

RESUMEN

Osmolytes produced under stress in animal and plant systems have been shown to increase thermal stability of the native state of a number of proteins as well as induce the formation of molten globule (MG) in acid denatured states and compact conformations in natively unfolded proteins. However, it is not clear whether these solutes stabilize native state relative to the MG state under partially denaturing conditions. Yeast hexokinase A exists as a MG state at pH 2.5 that does not show any cooperative transition upon heating. Does the presence of some of these osmolytes at pH 2.5 help in the retention of structure that is typical of native state? To answer this question, the effect of ethylene glycol (EG), glycerol, xylitol, sorbitol, trehalose and glucose at pH 2.5 on the structure and stability of yeast hexokinase A was investigated using spectroscopy and calorimetry. In presence of the above osmolytes, except EG, yeast hexokinase at pH 2.5 retains native secondary structure and hydrophobic core and unfolds with excessive heat absorption upon thermal denaturation. However, the cooperative structure binds to ANS suggesting that it is an intermediate between MG and the native state. Further, we show that at high concentration of polyols at pH 2.5, except EG, which populates a non-native ensemble, ΔH(cal)/ΔH(van) approaches unity indicative of two-state unfolding. The results suggest that osmolytes stabilize cooperative protein structure relative to non-cooperative ensemble. These findings have implications toward the structure formation, folding and stability of proteins produced under stress in cellular systems.


Asunto(s)
Hexoquinasa/química , Polímeros/química , Levaduras/enzimología , Dicroismo Circular , Glicol de Etileno/química , Glucosa/química , Glicerol/química , Concentración de Iones de Hidrógeno , Desnaturalización Proteica , Replegamiento Proteico , Estabilidad Proteica , Estructura Secundaria de Proteína , Solventes/química , Sorbitol/química , Espectrometría de Fluorescencia , Termodinámica , Urea/química
20.
PLoS One ; 6(11): e26186, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073150

RESUMEN

1-naphthol (1N), 2-naphthol (2N) and 8-quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (K(b)) of these pollutants to HSA were moderate (10(4)-10(5) M(-1)). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39-5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy-entropy compensation (EEC). The difference observed between ΔC(p) (exp) and ΔC(p) (calc) are suggested to be caused by binding-induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants.


Asunto(s)
Calorimetría/métodos , Contaminantes Ambientales/metabolismo , Albúmina Sérica/metabolismo , Electroforesis en Gel de Poliacrilamida , Transferencia Resonante de Energía de Fluorescencia , Humanos , Unión Proteica , Espectrofotometría Ultravioleta , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA