Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916286

RESUMEN

Therapy resistance is responsible for most cancer-related death and is mediated by the unique ability of cancer cells to leverage metabolic conditions, signaling molecules, redox status, and other pathways for their survival. Interestingly, many cancer survival pathways are susceptible to disturbances in cellular reactive oxygen species (ROS) and may therefore be disrupted by exogenous ROS. Here, we explore whether trident cold atmospheric plasma (Tri-CAP), a gas discharge with exceptionally low-level ROS, could inhibit multiple cancer survival pathways together in a murine cell line model of therapy-resistant chronic myeloid leukemia (CML). We show that Tri-CAP simultaneously disrupts three cancer survival pathways of redox deregulation, glycolysis, and proliferative AKT/mTOR/HIF-1α signaling in this cancer model. Significantly, Tri-CAP blockade induces a very high rate of apoptotic death in CML cell lines and in primary CD34+ hematopoietic stem and progenitor cells from CML patients, both harboring the therapy-resistant T315I mutation. In contrast, nonmalignant controls are minimally affected by Tri-CAP, suggesting it selectively targets resistant cancer cells. We further demonstrate that Tri-CAP elicits similar lethality in human melanoma, breast cancer, and CML cells with disparate, resistant mechanisms and that it both reduces tumor formation in two mouse models and improves survival of tumor-bearing mice. For use in patients, administration of Tri-CAP may be extracorporeal for hematopoietic stem cell transplantation therapy, transdermal, or through its activated solution for infusion therapy. Collectively, our results suggest that Tri-CAP represents a potent strategy for disrupting cancer survival pathways and overcoming therapy resistance in a variety of malignancies.


Asunto(s)
Leucemia Experimental/terapia , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Gases em Plasma/uso terapéutico , Animales , Carcinogénesis , Línea Celular Tumoral , Humanos , Ácido Láctico/metabolismo , Leucemia Experimental/mortalidad , Ratones , Oxidación-Reducción
2.
Gastrointest Endosc ; 89(1): 105-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120959

RESUMEN

BACKGROUND AND AIMS: It has been increasingly recognized that the safety of GI endoscopes needs to be improved by addressing the small margin of safety of high-level disinfectants (HLDs) and the failure of HLDs to clear multidrug-resistant organisms and biofilms. There is also an unmet need for effective low-temperature sterilization techniques that have a clear pathway for U.S. Food and Drug Administration clearance. Here, we report the results of our investigation of a novel argon plasma-activated gas (PAG) for disinfection and potentially sterilization of biofilm-contaminated endoscopic channels. METHODS: Test polytetrafluoroethylene channel segments were contaminated with 4-, 24- and 48-hour luminal biofilms of methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, or Escherichia coli and were treated by PAG flowing for up to 9 minutes. After PAG treatment, inactivation and dispersal of luminal bacterial biofilms and their regrowth in 48 hours were evaluated. Reactive species induced by PAG were measured with colorimetric probes and electron spin resonance spectrometry. Surface morphology and elemental composition of PAG-treated channel material were analyzed with scanning electron microscopy. RESULTS: PAG treatment for 9 minutes led to more than 8 log reduction of viable cells and dispersal of 24- and 48-hour luminal biofilms of all 3 bacteria and to suppression of their regrowth, whereas it resulted in little morphologic abnormalities in channel material. Ozone concentration of PAG fell to below .01 ppm within 30 seconds of switching off the plasma. PAG-treated deionized water was acidified with numerous types of reactive species, each with a concentration some 3 orders of magnitude or more below its bacterial inhibition concentration. CONCLUSIONS: PAG is capable of effectively and rapidly disinfecting luminal bacterial biofilms and offers an alternative to the step of HLDs and/or ethylene oxide in the endoscope reprocessing procedure with safety to personnel and environment.


Asunto(s)
Argón/farmacología , Biopelículas/efectos de los fármacos , Endoscopios Gastrointestinales/microbiología , Contaminación de Equipos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Desinfección/métodos , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/ultraestructura , Humanos , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/ultraestructura , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-29844050

RESUMEN

Antimicrobial lock solutions are important for prevention of microbial colonization and infection of long-term central venous catheters. We investigated the efficacy and safety of a novel antibiotic-free lock solution formed from gas plasma-activated disinfectant (PAD). Using a luminal biofilm model, viable cells of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans in mature biofilms were reduced by 6 to 8 orders of magnitude with a PAD lock for 60 min. Subsequent 24-h incubation of PAD-treated samples resulted in no detectable regrowth of viable bacteria or fungi. As a comparison, the use of a minocycline-EDTA-ethanol lock solution for 60 min led to regrowth of bacteria and fungi, up to 107 to 109 CFU/ml, in 24 h. The PAD lock solution had minimal impact on human umbilical vein endothelial cell viability, whereas the minocycline-EDTA-ethanol solution elicited cell death in nearly half of human endothelial cells. Additionally, PAD treatment caused little topological change to catheter materials. In conclusion, PAD represents a novel antibiotic-free, noncytotoxic lock solution that elicits rapid and broad-spectrum eradication of biofilm-laden microbes and shows promise for the prevention and treatment of intravascular catheter infections.


Asunto(s)
Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
4.
Langmuir ; 27(23): 14570-80, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22029599

RESUMEN

Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM.


Asunto(s)
Microondas , Muramidasa/química , Nanoestructuras/química , Polímeros/química , Albúmina Sérica Bovina/química , Termodinámica , Animales , Bovinos , Muramidasa/metabolismo , Presión , Propiedades de Superficie
5.
Plasma Process Polym ; 18(7): 2000215, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34220401

RESUMEN

Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.

6.
Oncotarget ; 7(36): 58121-58132, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27486769

RESUMEN

A low pressure plasma process based on plasma deposition has been used to develop a drug delivery strategy. In this study, a drug delivery system based on different layers of plasma co-polymerized Poly ε-caprolactone-Polyethylene glycol (PCL-PEG) co-polymers was deposited on biocompatible substrates. Cis-platinum (118 µgm/cm2) was used as an anti-cancer drug and incorporated for local delivery of the chemotherapeutic agent. The co-polymer layers and their interaction with cancer cells were analyzed by scanning electron microscopy. Our study showed that the plasma-PCL-PEG coated cellophane membranes, in which the drug, was included did not modify the flexibility and appearance of the membranes. This system was actively investigated as an alternative method of controlling localized delivery of drug in vivo. The loading of the anti-cancer drug was investigated by UV-VIS spectroscopy and its release from plasma deposited implants against BALB/c mice liver tissues were analyzed through histological examination and apoptosis by TUNEL assay. The histological examination of liver tissues revealed that when the plasma-modified membranes encapsulated the cis-platinum, the Glisson's capsule and liver parenchyma were damaged. In all cases, inflammatory tissues and fibrosis cells were observed in contact zones between the implant and the liver parenchyma. In conclusion, low pressure plasma deposited uniform nano-layers of the co-polymers can be used for controlled release of the drug in vivo.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Portadores de Fármacos/química , Polimerizacion/efectos de la radiación , Animales , Plásticos Biodegradables/química , Plásticos Biodegradables/efectos de la radiación , Caproatos/química , Caproatos/efectos de la radiación , Celofán/química , Celofán/efectos de la radiación , Preparaciones de Acción Retardada/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Implantes de Medicamentos , Femenino , Lactonas/química , Lactonas/efectos de la radiación , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Polietilenglicoles/química , Polietilenglicoles/efectos de la radiación , Polímeros/química , Polímeros/efectos de la radiación , Ondas de Radio , Análisis Espectral
7.
Mater Sci Eng C Mater Biol Appl ; 33(6): 3197-205, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23706201

RESUMEN

In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2'-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 µA mg(-1)L and 2.7 µA mg(-1)L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months.


Asunto(s)
Alilamina/química , Técnicas Biosensibles , Carbono/química , Lacasa/metabolismo , Biocatálisis , Técnicas Electroquímicas , Electrodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lacasa/química , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Polimerizacion , Trametes/enzimología
8.
ACS Macro Lett ; 1(6): 764-767, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35607100

RESUMEN

Catalyst-free ring-opening polymerization (ROP) strategy was developed to overcome the disadvantage of incomplete and expensive removal of catalyst used during the multistep wet chemical processes. Nano-sized biocompatible and low molecular weight poly(ε-carolactone)-poly(ethylene glycol) (PCL-PEG) copolymer coatings were deposited via a single-step, low-pressure, pulsed-plasma polymerization process. Experiments were performed at different monomer feed ratio and effective plasma power. The coatings were analyzed by XPS, as well as MALDI ToF. Ellipsometric measurement showed deposition rates ranging from 1.3 to 3 nm/min, depending on the ratio of the PCL/PEG precursors introduced in the reactor. Our results have demonstrated that plasma copolymerized PCL-PEG coatings can be tailored in such a way to be cell adherent, convenient for biomedical implants such as artificial skin substrates, or cell repellent, which can be used as antibiofouling surfaces for urethral catheters, cardiac stents, and so on. The global objective of this study is to tailor the surface properties of PCL by copolymerizing it with PEG in the pulsed plasma environment to improve their applicability in tissue engineering and biomedical science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA