Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Physiol ; 596(16): 3617-3635, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29746010

RESUMEN

KEY POINTS: The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT: Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-ßPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of ßPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.


Asunto(s)
Actinas/metabolismo , Contracción Muscular , Músculo Liso/fisiología , Tráquea/fisiología , Quinasas p21 Activadas/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Células Cultivadas , Perros , Femenino , Masculino , Músculo Liso/citología , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Paxillin/metabolismo , Fosforilación , Polimerizacion , Transducción de Señal , Tráquea/citología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(5): E430-9, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605924

RESUMEN

"Pinhead sperm," or "acephalic sperm," a type of human teratozoospermia, refers to the condition in which ejaculate contains mostly sperm flagella without heads. Family clustering and homogeneity of this syndrome suggests a genetic basis, but the causative genes remain largely unknown. Here we report that Spata6, an evolutionarily conserved testis-specific gene, encodes a protein required for formation of the segmented columns and the capitulum, two major structures of the sperm connecting piece essential for linking the developing flagellum to the head during late spermiogenesis. Inactivation of Spata6 in mice leads to acephalic spermatozoa and male sterility. Our proteomic analyses reveal that SPATA6 is involved in myosin-based microfilament transport through interaction with myosin subunits (e.g., MYL6).


Asunto(s)
Proteínas/fisiología , Cabeza del Espermatozoide/fisiología , Cola del Espermatozoide/fisiología , Animales , Proteínas del Citoesqueleto , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas/genética , Cabeza del Espermatozoide/ultraestructura , Cola del Espermatozoide/ultraestructura
3.
PLoS Genet ; 10(12): e1004825, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474150

RESUMEN

As a member of the large Ran-binding protein family, Ran-binding protein 9 (RANBP9) has been suggested to play a critical role in diverse cellular functions in somatic cell lineages in vitro, and this is further supported by the neonatal lethality phenotype in Ranbp9 global knockout mice. However, the exact molecular actions of RANBP9 remain largely unknown. By inactivation of Ranbp9 specifically in testicular somatic and spermatogenic cells, we discovered that Ranbp9 was dispensable for Sertoli cell development and functions, but critical for male germ cell development and male fertility. RIP-Seq and proteomic analyses revealed that RANBP9 was associated with multiple key splicing factors and directly targeted >2,300 mRNAs in spermatocytes and round spermatids. Many of the RANBP9 target and non-target mRNAs either displayed aberrant splicing patterns or were dysregulated in the absence of Ranbp9. Our data uncovered a novel role of Ranbp9 in regulating alternative splicing in spermatogenic cells, which is critical for normal spermatogenesis and male fertility.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Empalme Alternativo/genética , Proteínas del Citoesqueleto/fisiología , Fertilidad/genética , Proteínas Nucleares/fisiología , Espermatogénesis/genética , Espermatozoides/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proteínas del Citoesqueleto/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Espermátides/metabolismo , Espermatocitos/fisiología
4.
J Biol Chem ; 289(47): 32824-34, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25320077

RESUMEN

PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that bind PIWI family proteins exclusively expressed in the germ cells of mammalian gonads. MIWI2-associated piRNAs are essential for silencing transposons during primordial germ cell development, and MIWI-bound piRNAs are required for normal spermatogenesis during adulthood in mice. Although piRNAs have long been regarded as germ cell-specific, increasing lines of evidence suggest that somatic cells also express piRNA-like RNAs (pilRNAs). Here, we report the detection of abundant pilRNAs in somatic cells, which are similar to MIWI-associated piRNAs mainly expressed in pachytene spermatocytes and round spermatids in the testis. Based on small RNA deep sequencing and quantitative PCR analyses, pilRNA expression is dynamic and displays tissue specificity. Although pilRNAs are similar to pachytene piRNAs in both size and genomic origins, they have a distinct ping-pong signature. Furthermore, pilRNA biogenesis appears to utilize a yet to be identified pathway, which is different from all currently known small RNA biogenetic pathways. In addition, pilRNAs appear to preferentially target the 3'-UTRs of mRNAs in a partially complementary manner. Our data suggest that pilRNAs, as an integral component of the small RNA transcriptome in somatic cell lineages, represent a distinct population of small RNAs that may have functions similar to germ cell piRNAs.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Intestino Delgado/metabolismo , Fase Paquiteno/genética , ARN Interferente Pequeño/genética , Testículo/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Regulación de la Expresión Génica , Intestino Delgado/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatocitos/metabolismo , Testículo/citología , Transcriptoma
5.
J Physiol ; 591(12): 2971-86, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23613531

RESUMEN

Ca(2+) sensitization of contraction has typically been investigated by bathing muscles in solutions containing agonists. However, it is unknown whether bath-applied agonists and enteric neurotransmission activate similar Ca(2+) sensitization mechanisms. We investigated protein kinase C (PKC)-potentiated phosphatase inhibitor protein of 17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation in murine gastric fundus muscles stimulated by bath-applied carbachol (CCh) or cholinergic motor neurotransmission. CCh increased MYPT1 phosphorylation at Thr696 (pT696) and Thr853 (pT853), CPI-17 at Thr38 (pT38), and myosin light chain at Ser19 (pS19). Electrical field stimulation (EFS) only increased pT38. In the presence of neostigmine, EFS increased pT38, pT853 and pS19. In fundus muscles of W/W(v) mice, EFS alone increased pT38 and pT853. Atropine blocked all contractions and all increases in pT696, pT853, pT38 and pS19. The Rho kinase (ROCK) inhibitor SAR1x blocked increases in pT853 and pT696. The PKC inhibitors Go6976 and Gf109203x or nicardipine blocked increases in pT38 and pT696. These findings suggest that cholinergic motor neurotransmission activates PKC-dependent CPI-17 phosphorylation. Bath-applied CCh recruits additional ROCK-dependent MYPT1 phosphorylation due to exposure of the agonist to a wider population of muscarinic receptors. Intramuscular interstitial cells of Cajal (ICC-IMs) and cholinesterases restrict ACh accessibility to a select population of muscarinic receptors, possibly only those expressed by ICC-IMs. These results provide the first biochemical evidence for focalized (or synaptic-like) neurotransmission, rather than diffuse 'volume' neurotransmission in a smooth muscle tissue. Furthermore, these findings demonstrate that bath application of contractile agonists to gastrointestinal smooth muscles does not mimic physiological responses to cholinergic neurotransmission.


Asunto(s)
Calcio/metabolismo , Fundus Gástrico/fisiología , Transmisión Sináptica , Animales , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/fisiología , Estimulación Eléctrica , Fundus Gástrico/inervación , Fundus Gástrico/metabolismo , Células Intersticiales de Cajal/fisiología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/farmacología , Contracción Muscular , Proteínas Musculares/metabolismo , Músculo Liso/inervación , Músculo Liso/metabolismo , Músculo Liso/fisiología , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera , Neostigmina/farmacología , Fosfoproteínas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología
6.
J Biol Chem ; 287(20): 16575-85, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22437831

RESUMEN

Alternative splicing of the smooth muscle myosin phosphatase targeting subunit (Mypt1) exon 23 (E23) is tissue-specific and developmentally regulated and, thus, an attractive model for the study of smooth muscle phenotypic specification. We have proposed that Tra2ß functions as a tissue-specific activator of Mypt1 E23 splicing on the basis of concordant expression patterns and Tra2ß activation of Mypt1 E23 mini-gene splicing in vitro. In this study we examined the relationship between Tra2ß and Mypt1 E23 splicing in vivo in the mouse. Tra2ß was 2- to 5-fold more abundant in phasic smooth muscle tissues, such as the portal vein, small intestine, and small mesenteric artery, in which Mypt1 E23 is predominately included as compared with the tonic smooth muscle tissues, such as the aorta and inferior vena cava, in which Mypt1 E23 is predominately skipped. Tra2ß was up-regulated in the small intestine postnatally, concordant with a switch to Mypt1 E23 splicing. Targeting of Tra2ß in smooth muscle cells using SM22α-Cre caused a substantial reduction in Mypt1 E23 inclusion specifically in the intestinal smooth muscle of heterozygotes, indicating sensitivity to Tra2ß gene dosage. The switch to the Mypt1 E23 skipped isoform coding for the C-terminal leucine zipper motif caused increased sensitivity of the muscle to the relaxant effects of 8-Br-cyclic guanosine monophosphate (cGMP). We conclude that Tra2ß is necessary for the tissue-specific splicing of Mypt1 E23 in the phasic intestinal smooth muscle. Tra2ß, by regulating the splicing of Mypt1 E23, sets the sensitivity of smooth muscle to cGMP-mediated relaxation.


Asunto(s)
Empalme Alternativo/fisiología , Exones/fisiología , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/biosíntesis , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , GMP Cíclico/genética , GMP Cíclico/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Relajación Muscular/fisiología , Miocitos del Músculo Liso/citología , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera , Proteínas Nucleares/genética , Especificidad de Órganos/fisiología , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina
7.
J Muscle Res Cell Motil ; 34(2): 137-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23576331

RESUMEN

Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K(+)-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca(2+) transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis.


Asunto(s)
Contracción Muscular , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosfoproteínas/metabolismo , Antro Pilórico/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Gastroparesia/metabolismo , Gastroparesia/patología , Gastroparesia/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Obesos , Músculo Liso/patología , Músculo Liso/fisiopatología , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Antro Pilórico/patología , Antro Pilórico/fisiopatología
8.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37736248

RESUMEN

Breast cancer is one of the most commonly diagnosed cancers among women, however the complete cure for metastatic breast cancer is lacking due to poor prognosis. There has been an increasing trend of dietary modifications including consumption of natural food for the prevention of cancer. One of the popular natural foods is bitter melon. Bitter melon grows in tropical and subtropical areas. Some of the beneficial effects of bitter melon towards disease including cancer have been reported at the whole body/organismal level. However, specific cellular mechanisms by which bitter melon exerts beneficial effects in breast cancer are lacking. In this study, we used a human metastatic breast cancer cell line, MCF-7 cell, to study if bitter melon alters glucose clearance from the culture medium. We co-cultured MCF-7 cells with bitter melon extract in the presence and absence of supplemented insulin and subsequently measured MCF-7 cells viability. In this study, we report a noble finding that bitter melon extract exerts cytotoxic effects on MCF-7 cells possibly via inhibition of glucose uptake. Our findings show that insulin rescues MCF-7 cells from the effects of bitter melon extract.

9.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645734

RESUMEN

Background: Coronary vessels in embryonic mouse heart arises from multiple progenitor population including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is shown to regulate coronary growth from SV pathway within the subepicardium, whereas VEGF-A/VEGF-R2 pathways is implicated to regulate coronary growth from endocardium pathway. Our previous study show hypoxia as a potential signaling cue to stimulate overall coronary growth and expansion within the myocardium. However, the role of hypoxia and its downstream signaling pathways in the regulation of coronary vessel development is not known. In this study, we investigated the role of hypoxia in coronary vessel development and have identified SOX17- and VEGF-R2-mediated signaling as a potential downstream pathway of hypoxia in the regulation of coronary vessel development. Results: We show that hypoxia gain-of-function in the myocardium through upregulation of HIF-1α disrupts the normal pattern of coronary angiogenesis in developing mouse hearts and displays phenotype that is reminiscent of accelerated coronary growth. We show that VEGF-R2 expression is increased in coronary endothelial cells under hypoxia gain-of-function in vivo and in vitro . Furthermore, we show that SOX17 expression is upregulated in developing mouse heart under hypoxia gain-of-function conditions, whereas SOX17 expression is repressed under hypoxia loss-of-function conditions. Furthermore, our results show that SOX17 loss-of-function disrupts normal pattern of coronary growth. Conclusion: Collectively, our data provide strong phenotypic evidence to show that hypoxia might regulate coronary growth in the developing mouse heart potentially through VEGF-R2- and SOX17-mediated downstream signaling pathways.

12.
Sci Rep ; 7(1): 12245, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947806

RESUMEN

During filling, urinary bladder volume increases dramatically with little change in pressure. This is accomplished by suppressing contractions of the detrusor muscle that lines the bladder wall. Mechanisms responsible for regulating detrusor contraction during filling are poorly understood. Here we describe a novel pathway to stabilize detrusor excitability involving platelet-derived growth factor receptor-α positive (PDGFRα+) interstitial cells. PDGFRα+ cells express small conductance Ca2+-activated K+ (SK) and TRPV4 channels. We found that Ca2+ entry through mechanosensitive TRPV4 channels during bladder filling stabilizes detrusor excitability. GSK1016790A (GSK), a TRPV4 channel agonist, activated a non-selective cation conductance that coupled to activation of SK channels. GSK induced hyperpolarization of PDGFRα+ cells and decreased detrusor contractions. Contractions were also inhibited by activation of SK channels. Blockers of TRPV4 or SK channels inhibited currents activated by GSK and increased detrusor contractions. TRPV4 and SK channel blockers also increased contractions of intact bladders during filling. Similar enhancement of contractions occurred in bladders of Trpv4 -/- mice during filling. An SK channel activator (SKA-31) decreased contractions during filling, and rescued the overactivity of Trpv4 -/- bladders. Our findings demonstrate how Ca2+ influx through TRPV4 channels can activate SK channels in PDGFRα+ cells and prevent bladder overactivity during filling.


Asunto(s)
Células Musculares/química , Células Musculares/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/análisis , Vejiga Urinaria/fisiología , Animales , Células Cultivadas , Ratones , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Canales Catiónicos TRPV
13.
PLoS One ; 10(8): e0134876, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26258553

RESUMEN

Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/WV mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/WV gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism to augment gastric fundus mechanical responses to inhibitory neurotransmission.


Asunto(s)
Fundus Gástrico/fisiología , Músculo Liso/fisiología , Quinasa de Cadena Ligera de Miosina/química , Fragmentos de Péptidos/química , Animales , Carbacol/química , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/química , Fundus Gástrico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Cadenas Ligeras de Miosina/química , Neuronas/fisiología , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Nitroprusiato/química , Fosforilación , Cloruro de Potasio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA