Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microb Pathog ; 192: 106681, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754565

RESUMEN

Tuberculosis (TB) is a major fatal infectious disease globally, exhibiting high morbidity rates and impacting public health and other socio-economic factors. However, some individuals are resistant to TB infection and are referred to as "Resisters". Resisters remain uninfected even after exposure to high load of Mycobacterium tuberculosis (Mtb). To delineate this further, this study aimed to investigate the factors and mechanisms influencing the Mtb resistance phenotype. We assayed the phagocytic capacity of peripheral blood mononuclear cells (PBMCs) collected from Resisters, patients with latent TB infection (LTBI), and patients with active TB (ATB), following infection with fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Phagocytosis was stronger in PBMCs from ATB patients, and comparable in LTBI patients and Resisters. Subsequently, phagocytes were isolated and subjected to whole transcriptome sequencing and small RNA sequencing to analyze transcriptional expression profiles and identify potential targets associated with the resistance phenotype. The results revealed that a total of 277 mRNAs, 589 long non-coding RNAs, 523 circular RNAs, and 35 microRNAs were differentially expressed in Resisters and LTBI patients. Further, the endogenous competitive RNA (ceRNA) network was constructed from differentially expressed genes after screening. Bioinformatics, statistical analysis, and quantitative real-time polymerase chain reaction were used for the identification and validation of potential crucial targets in the ceRNA network. As a result, we obtained a ceRNA network that contributes to the resistance phenotype. TCONS_00034796-F3, ENST00000629441-DDX43, hsa-ATAD3A_0003-CYP17A1, and XR_932996.2-CERS1 may be crucial association pairs for resistance to TB infection. Overall, this study demonstrated that the phagocytic capacity of PBMCs was not a determinant of the resistance phenotype and that some non-coding RNAs could be involved in the natural resistance to TB infection through a ceRNA mechanism.


Asunto(s)
Leucocitos Mononucleares , MicroARNs , Mycobacterium tuberculosis , Fagocitos , Fagocitosis , Tuberculosis , Humanos , Fagocitos/metabolismo , Fagocitos/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/inmunología , Fagocitosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Masculino , Adulto , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Femenino , Transcriptoma/genética , Tuberculosis Latente/genética , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Resistencia a la Enfermedad/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mycobacterium bovis/inmunología , Persona de Mediana Edad , Biología Computacional/métodos , Adulto Joven , ARN Endógeno Competitivo
2.
Bioengineering (Basel) ; 11(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38534516

RESUMEN

The cellular prion protein (PrPc) is a cell surface glycoprotein that is highly expressed in a variety of cancer tissues in addition to the nervous system, and its elevated expression is correlated to poor prognosis in many cancer patients. Our team previously found that patients with colorectal cancer (CRC) with high-level PrPc expression had significantly poorer survival than those with no or low-level PrPc expression. Mouse antibodies for PrPc inhibited tumor initiation and liver metastasis of PrPc-positive human CRC cells in mouse model experiments. PrPc is a candidate target for CRC therapy. In this study, we newly cloned a mouse anti-PrPc antibody (Clone 6) and humanized it, then affinity-matured this antibody using a CHO cell display with a peptide antigen and full-length PrPc, respectively. We obtained two humanized antibody clones with affinities toward a full-length PrPc of about 10- and 100-fold of that of the original antibody. The two humanized antibodies bound to the PrPc displayed significantly better on the cell surface than Clone 6. Used for Western blotting and immunohistochemistry, the humanized antibody with the highest affinity is superior to the two most frequently used commercial antibodies (8H4 and 3F4). The two new antibodies have the potential to be developed as useful reagents for PrPc detection and even therapeutic antibodies targeting PrPc-positive cancers.

3.
Discov Med ; 36(185): 1268-1279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926113

RESUMEN

BACKGROUND: Tuberculosis (TB) stands as the second most prevalent infectious agent-related cause of death worldwide in 2022, trailing only COVID-19. With 1.13 million reported deaths, this figure is more than half of the mortality associated with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), which accounted for 0.63 million deaths. Diagnosing Mycobacterium tuberculosis (MTB) infection remains a formidable challenge due to the inability to isolate and detect MTB in sputum and within the human body. The absence of universally reliable diagnostic criteria for MTB infection globally poses a significant obstacle to preventing the progression of tuberculosis from the MTB infection stage. METHODS: In this study, our objective was to formulate a diagnostic biomarker cluster capable of discerning the progression of MTB infection and disease. This was achieved through a comprehensive joint multiomics analysis, encompassing transcriptome, proteome, and metabolome, conducted on lung tissue samples obtained from both normal control mice and those infected with MTB. RESULTS: A total of 1690 differentially expressed genes and 94 differentially expressed proteins were systematically screened. From this pool, 10 core genes were singled out. Additionally, eight long non-coding ribonucleic acids and eight metabolites linked to these core genes were identified to establish a cohesive cluster of biomarkers. This multiomics-based biomarker cluster demonstrated its capability to differentiate uninfected samples from MTB-infected samples effectively in both principle component analysis and the construction of a random forest model. CONCLUSION: The outcomes of our study strongly suggest that the multiomics-based biomarker cluster holds significant potential for enhancing the diagnosis of MTB infection.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Animales , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/metabolismo , Ratones , Biomarcadores/metabolismo , Mycobacterium tuberculosis/genética , Transcriptoma , Humanos , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Femenino , Metaboloma , Proteómica/métodos , Proteoma/metabolismo , Multiómica
4.
Int J Biol Macromol ; 260(Pt 2): 129331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218299

RESUMEN

Tuberculosis (TB), a leading cause of mortality globally, is a chronic infectious disease caused by Mycobacterium tuberculosis that primarily infiltrates the lung. The mature crRNAs in M. tuberculosis transcribed from the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus exhibit an atypical structure featured with 5' and 3' repeat tags at both ends of the intact crRNA, in contrast to typical Type-III-A crRNAs that possess 5' repeat tags and partial crRNA sequences. However, this structural peculiarity particularly concerning the specific binding characteristics of the 3' repeat end within the mature crRNA within the Csm complex, has not been comprehensively elucidated. Here, our Mycobacteria CRISPR-Csm complexes structure represents the largest Csm complex reported to date. It incorporates an atypical Type-III-A CRISPR RNA (crRNA) (46 nt) with 5' 8-nt and 3' 4-nt repeat sequences in the stoichiometry of Mycobacteria Csm1125364151. The PAM-independent single-stranded RNAs (ssRNAs) are the most suitable substrate for the Csm complex. The 3'-repeat end trimming of mature crRNA was not necessary for its cleavage activity in Type-III-A Csm complex. Our work broadens our understanding of the Type-III-A Csm complex and identifies another mature crRNA processing mechanism in the Type-III-A CRISPR-Cas system based on structural biology.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , ARN Guía de Sistemas CRISPR-Cas , ARN Bacteriano/genética , Sistemas CRISPR-Cas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/genética
5.
Clin Microbiol Infect ; 30(5): 637-645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286176

RESUMEN

OBJECTIVES: We elucidated the factors, evolution, and compensation of antimicrobial resistance (AMR) in Mycobacterium tuberculosis (MTB) isolates under dual pressure from the intra-host environment and anti-tuberculosis (anti-TB) drugs. METHODS: This retrospective case-control study included 337 patients with pulmonary tuberculosis from 15 clinics in Tianjin, China, with phenotypic drug susceptibility testing results available for at least two time points between January 1, 2009 and December 31, 2016. Patients in the case group exhibited acquired AMR to isoniazid (INH) or rifampicin (RIF), while those in the control group lacked acquired AMR. The whole-genome sequencing (WGS) was conducted on 149 serial longitudinal MTB isolates from 46 patients who acquired or reversed phenotypic INH/RIF-resistance during treatment. The genetic basis, associated factors, and intra-host evolution of acquired phenotypic INH/RIF-resistance were elucidated using a combined analysis. RESULTS: Anti-TB interruption duration of ≥30 days showed association with acquired phenotypic INH/RIF resistance (aOR = 2·2, 95% CI, 1·0-5·1) and new rpoB mutations (p = 0·024). The MTB evolution was 1·2 (95% CI, 1·02-1·38) single nucleotide polymorphisms per genome per year under dual pressure from the intra-host environment and anti-TB drugs. AMR-associated mutations occurred before phenotypic AMR appearance in cases with acquired phenotypic INH (10 of 16) and RIF (9 of 22) resistances. DISCUSSION: Compensatory evolution may promote the fixation of INH/RIF-resistance mutations and affect phenotypic AMR. The TB treatment should be adjusted based on gene sequencing results, especially in persistent culture positivity during treatment, which highlights the clinical importance of WGS in identifying reinfection and AMR acquisition before phenotypic drug susceptibility testing.


Asunto(s)
Antituberculosos , Isoniazida , Mycobacterium tuberculosis , Rifampin , Tuberculosis Pulmonar , Secuenciación Completa del Genoma , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Isoniazida/farmacología , Isoniazida/uso terapéutico , China , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Fenotipo , Mutación , Farmacorresistencia Bacteriana/genética , Anciano , Evolución Molecular , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA