Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Langmuir ; 34(2): 700-708, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29268613

RESUMEN

It has been paid much attention to improve the helical twisting power (ß) of dopants in chiral nematic liquid crystals (CLCs); however, the correlations between the ß value and the molecular structures as well as the interaction with nematic LCs are far from clear. In this work, a series of reversibly photo-switchable axially chiral dopants with different lengths of alkyl or alkoxyl substituent groups have been successfully synthesized through nucleophilic substitution and the thiol-ene click reaction. Then, the effect of miscibility between these dopants and nematic LCs on the ß values, as well as the time-dependent decay/growth of the ß values upon irradiations, has been investigated. The theoretical Teas solubility parameter shows that the miscibility between dopants and nematic LCs decreases with increasing of the length of substituent groups from dopant 1 to dopant 4. The ß value of chiral dopants in nematic LCs decreases from dopant 1 to dopant 4 both at the visible light photostationary state (PSS) and at the UV PSS after UV irradiation. With increasing of the length of substituent groups, the photoisomerization rate constant of dopants increases for trans-cis transformation upon UV irradiation and decreases for the reverse process upon visible light irradiation either in isotropic ethyl acetate or in anisotropic LCs, although the constant in ethyl acetate is several times larger than the corresponding value in LCs. Also, the color of the CLCs could be tuned upon light irradiations. These results enable the precise tuning of the pitch and selective reflection wavelength/color of CLCs, which paves the way to the applications in electro-optic devices, information storage, high-tech anticounterfeit, and so forth.

2.
J Am Chem Soc ; 136(25): 8855-8, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24930947

RESUMEN

Controlling the kinetics and gelation of photopolymerization is a significant challenge in the fabrication of complex three-dimensional (3D) objects as is critical in numerous imaging, lithography, and additive manufacturing techniques. We propose a novel, visible light sensitive "photoinitibitor" which simultaneously generates two distinct radicals, each with their own unique purpose-one radical each for initiation and inhibition. The Janus-faced functions of this photoinitibitor delay gelation and dramatically amplify the gelation time difference between the constructive and destructive interference regions of the exposed holographic pattern. This approach enhances the photopolymerization induced phase separation of liquid crystal/acrylate resins and the formation of fine holographic polymer dispersed liquid crystal (HPDLC) gratings. Moreover, we construct colored 3D holographic images that are visually recognizable to the naked eye under white light.

3.
Macromol Rapid Commun ; 35(7): 741-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497409

RESUMEN

To achieve a fast photochromic response in solid matrix, photochromic molecules/segments have been either dispersed into elastomers via physical doping or linked to glassy polymers by soft units through covalent bonding. However, the former is lack of high mechanical strength and the latter owes the drawback of time-consumption of synthesis. Here, we propose a facile strategy of co-solvent evaporation to prepare polymer-dispersed photochromic organogel where both high mechanical strength of the glassy polymer matrix and solution-like fast photochromism of the photochromic molecule within organogel can be retained concurrently. Glassy PVA matrix and dispersed organogel of 1,3:2,4-di-O-benzylidene-d-sorbitol/poly(propylene glycol) (DBS/PPG) provide high mechanical strength and sufficient free volume for intramolecular rotation of photochromic spiropyran (SP), respectively. Interestingly, these thin films behave a solution-like decoloration the decay rate of which is 65-70 fold faster than that in the SP-directly doped PVA film and only slightly slower than those in their corresponding PPG solutions.


Asunto(s)
Geles/síntesis química , Polímeros/química , Glicoles de Propileno/química , Geles/química , Tamaño de la Partícula , Procesos Fotoquímicos , Soluciones , Estrés Mecánico , Propiedades de Superficie
4.
Proc Natl Acad Sci U S A ; 108(26): 10650-5, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670307

RESUMEN

Interaction of cell surface glycoproteins with endogenous lectins on the cell surface regulates formation and maintenance of plasma membrane domains, clusters signaling complexes, and controls the residency time of glycoproteins on the plasma membrane. Galectin-9 is a soluble, secreted lectin that binds to glycoprotein receptors to form galectin-glycoprotein lattices on the cell surface. Whereas galectin-9 binding to specific glycoprotein receptors induces death of CD4 Th1 cells, CD4 Th2 cells are resistant to galectin-9 death due to alternative glycosylation. On Th2 cells, galectin-9 binds cell surface protein disulfide isomerase (PDI), increasing retention of PDI on the cell surface and altering the redox status at the plasma membrane. Cell surface PDI regulates integrin function on platelets and also enhances susceptibility of T cells to infection with HIV. We find that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via ß3 integrins, identifying a unique mechanism to regulate T-cell migration. In addition, galectin-9 binding to PDI on T cells potentiates infection with HIV. We identify a mechanism for regulating cell surface redox status via a galectin-glycoprotein lattice, to regulate distinct T-cell functions.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Movimiento Celular , Galectinas/metabolismo , VIH-1/fisiología , Fusión de Membrana , Proteína Disulfuro Isomerasas/metabolismo , Animales , Western Blotting , Línea Celular , Membrana Celular/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Unión Proteica
5.
Chem Commun (Camb) ; 60(27): 3661-3664, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38456200

RESUMEN

Homogeneous integration of ultrafine TiO2 nanoparticles into a conductive sulfur-doped carbon skeleton was readily crafted by unusual space-confined twin-polymerization of a titanium-containing single-source coupled monomer and subsequent carbonization, producing a robust hetero-architecture for boosting lithium storage with large reversible capacity, high rate capability, and long-term cycling stability.

6.
J Colloid Interface Sci ; 674: 925-937, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959738

RESUMEN

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

7.
CNS Neurosci Ther ; 30(2): e14632, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38366763

RESUMEN

BACKGROUND: Olfactory dysfunction is known to be an early manifestation of Alzheimer's disease (AD). However, the underlying mechanism, particularly the specific molecular events that occur during the early stages of olfactory disorders, remains unclear. METHODS: In this study, we utilized transcriptomic sequencing, bioinformatics analysis, and biochemical detection to investigate the specific pathological and molecular characteristics of the olfactory bulb (OB) in 4-month-old male triple transgenic 3xTg-AD mice (PS1M146V/APPSwe/TauP301L). RESULTS: Initially, during the early stages of olfactory impairment, no significant learning and memory deficits were observed. Correspondingly, we observed significant accumulation of amyloid-beta (Aß) and Tau pathology specifically in the OB, but not in the hippocampus. In addition, significant axonal morphological defects were detected in the olfactory bulb, cortex, and hippocampal brain regions of 3xTg-AD mice. Transcriptomic analysis revealed a significant increase in the expression of neuroinflammation-related genes, accompanied by a significant decrease in neuronal activity-related genes in the OB. Moreover, immunofluorescence and immunoblotting demonstrated an activation of glial cell biomarkers Iba1 and GFAP, along with a reduction in the expression levels of neuronal activity-related molecules Nr4a2 and FosB, as well as olfaction-related marker OMP. CONCLUSION: In sum, the early accumulation of Aß and Tau pathology induces neuroinflammation, which subsequently leads to a decrease in neuronal activity within the OB, causing axonal transport deficits that contribute to olfactory disorders. Nr4a2 and FosB appear to be promising targets for intervention aimed at improving early olfactory impairment in AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Olfato , Ratones , Animales , Masculino , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Olfato , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Trastornos del Olfato/genética , Modelos Animales de Enfermedad , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Mol Neurobiol ; 61(9): 6788-6804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38351418

RESUMEN

Homocysteine (Hcy) is an independent and serious risk factor for dementia, including Alzheimer's disease (AD), but the precise mechanisms are still poorly understood. In the current study, we observed that the permissive histone mark trimethyl histone H3 lysine 4 (H3K4me3) and its methyltransferase KMT2B were significantly elevated in hyperhomocysteinemia (HHcy) rats, with impairment of synaptic plasticity and cognitive function. Further research found that histone methylation inhibited synapse-associated protein expression, by suppressing histone acetylation. Inhibiting H3K4me3 by downregulating KMT2B could effectively restore Hcy-inhibited H3K14ace in N2a cells. Moreover, chromatin immunoprecipitation revealed that Hcy-induced H3K4me3 resulted in ANP32A mRNA and protein overexpression in the hippocampus, which was regulated by increased transcription Factor c-fos and inhibited histone acetylation and synapse-associated protein expression, and downregulating ANP32A could reverse these changes in Hcy-treated N2a cells. Additionally, the knockdown of KMT2B restored histone acetylation and synapse-associated proteins in Hcy-treated primary hippocampal neurons. These data have revealed a novel crosstalk mechanism between KMT2B-H3K4me3-ANP32A-H3K14ace, shedding light on its role in Hcy-related neurogenerative disorders.


Asunto(s)
Histonas , Hiperhomocisteinemia , Animales , Histonas/metabolismo , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/patología , Acetilación , Metilación/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Hipocampo/metabolismo , Hipocampo/patología , Proteínas Nucleares/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratas , Sinapsis/metabolismo , Sinapsis/patología , Línea Celular Tumoral , Homocisteína/metabolismo , Homocisteína/farmacología
9.
CNS Neurosci Ther ; 29(12): 3943-3951, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37334737

RESUMEN

BACKGROUND: The systematic molecular associations between the peripheral blood cells and brain in Alzheimer's disease (AD) remains unclear, which hinders our understanding of AD pathological mechanisms and the exploration of new diagnostic biomarkers. METHODS: Here, we performed an integrated analysis of the brain and peripheral blood cells transcriptomics to establish peripheral biomarkers of AD. By employing multiple statistical analyses plus machine learning, we identified and validated multiple regulated central and peripheral network in patients with AD. RESULTS: By bioinformatics analysis, a total of 243 genes were differentially expressed in the central and peripheral systems, mainly enriched in three modules: immune response, glucose metabolism and lysosome. In addition, lysosome related gene ATP6V1E1 and immune response related genes (IL2RG, OSM, EVI2B TNFRSF1A, CXCR4, STAT5A) were significantly correlated with Aß or Tau pathology. Finally, receiver operating characteristic (ROC) analysis revealed that ATP6V1E1 showed high-diagnostic potential for AD. CONCLUSION: Taken together, our data identified the main pathological pathways in AD progression, particularly the systemic dysregulation of the immune response, and provided peripheral biomarkers for AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transcriptoma , Encéfalo/metabolismo , Biomarcadores/metabolismo
10.
Autophagy ; : 1-17, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964627

RESUMEN

Growing evidence suggests that macroautophagy/autophagy-lysosomal pathway deficits contribute to the accumulation of amyloid-ß (Aß) in Alzheimer disease (AD). Aerobic exercise (AE) has long been investigated as an approach to delay and treat AD, although the exact role and mechanism are not well known. Here, we revealed that AE could reverse autophagy-lysosomal deficits via activation of ADRB2/ß2-adrenergic receptor, leading to significant attenuation of amyloid-ß pathology in APP-PSEN1/PS1 mice. Molecular mechanism research found that AE could reverse autophagy deficits by upregulating the AMP-activated protein kinase (AMPK)-MTOR (mechanistic target of rapamycin kinase) signaling pathway. Moreover, AE could reverse V-ATPase function by upregulating VMA21 levels. Inhibition of ADRB2 by propranolol (antagonist, 30 µM) blocked AE-attenuated Aß pathology and cognitive deficits by inhibiting autophagy-lysosomal flux. AE may mitigate AD via many pathways, while ADRB2-VMA21-V-ATPase could improve cognition by enhancing the clearance of Aß through the autophagy-lysosomal pathway, which also revealed a novel theoretical basis for AE attenuating pathological progression and cognitive deficits in AD.

11.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501707

RESUMEN

The hydrophilicity and inherent flammability of cotton textiles severely limit their usage. To solve these drawbacks, a superhydrophobic and flame-retardant (SFR) coating made of chitosan (CH), ammonium polyphosphate (APP), and TiO2-SiO2-HMDS composite was applied to cotton fabric using simple layer-by-layer assembly and dip-coating procedures. First, the fabric was alternately immersed in CH and APP water dispersions, and then immersed in TiO2-SiO2-HMDS composite to form a CH/APP@TiO2-SiO2-HMDS coating on the cotton fabric surface. SEM, EDS, and FTIR were used to analyze the surface morphology, element composition, and functional groups of the cotton fabric, respectively. Vertical burning tests, microscale combustion calorimeter tests, and thermogravimetric analyses were used to evaluate the flammability, combustion behavior, thermal degradation characteristics, and flame-retardant mechanism of this system. When compared to the pristine cotton sample, the deposition of CH and APP enhanced the flame retardancy, residual char, heat release rate, and total heat release of the cotton textiles. The superhydrophobic test results showed that the maximal contact angle of SFR cotton fabric was 153.7°, and possessed excellent superhydrophobicity. Meanwhile, the superhydrophobicity is not lost after 10 laundering cycles or 50 friction cycles. In addition, the UPF value of CH/APP@TiO2-SiO2-HMDS cotton was 825.81, demonstrating excellent UV-shielding properties. Such a durable SFR fabric with a facile fabrication process exhibits potential applications for both oil/water separation and flame retardancy.

12.
J Biol Chem ; 285(4): 2232-44, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19920154

RESUMEN

Galectin-1, a beta-galactoside-binding protein highly expressed in the thymus, induces apoptosis of specific thymocyte subsets and activated T cells. Galectin-1 binds to N- and O-glycans on several glycoprotein receptors, including CD7, CD43, and CD45. Here we show that galectin-1 signaling through CD45, which carries both N- and O-glycans, is regulated by CD45 isoform expression, core 2 O-glycan formation and the balance of N-glycan sialylation. Regulation of galectin-1 T cell death by O-glycans is mediated through CD45 phosphatase activity. While galectin-1 signaling in cells expressing low molecular weight isoforms of CD45 requires expression of core 2 O-glycans (high affinity ligands for galectin-1), galectin-1 signaling in cells expressing a high molecular weight isoform of CD45 does not require core 2 O-glycans, suggesting that a larger amount of core 1 O-glycans (low affinity ligands for galectin-1) is sufficient to overcome lack of core 2 O-glycans. Furthermore, regulation of galectin-1 signaling by alpha2,6-sialylation of N-glycans is not solely dependent on CD45 phosphatase activity and can be modulated by the relative expression of enzymes that attach sialic acid in an alpha2,6- or alpha2,3-linkage. Thus, N- and O-glycans modulate galectin-1 T cell death by distinct mechanisms, and different glycosylation events can render thymocytes susceptible or resistant to galectin-1.


Asunto(s)
Muerte Celular/inmunología , Galectina 1/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Polisacáridos/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Animales , Línea Celular , Galectina 1/química , Galectina 1/genética , Regulación del Desarrollo de la Expresión Génica/inmunología , Glicosilación , Antígenos Comunes de Leucocito/química , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Ácido N-Acetilneuramínico/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Linfocitos T/citología , Timo/citología , Timo/crecimiento & desarrollo , Transfección , Tirosina/metabolismo
13.
Glycobiology ; 21(10): 1258-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21187321

RESUMEN

ß-Galactoside-binding lectin 9 (galectin-9) is a tandem repeat-type member of the galectin family. It was initially characterized as an eosinophil chemoattractant and an inducer of apoptosis in thymocytes. Subsequently, galectin-9 was identified as a ligand for transmembrane immunoglobulin mucin domain 3 (Tim-3), a type I glycoprotein induced on T cells during chronic inflammation. Work in autoimmune diseases and chronic viral infections have led to the current hypothesis that the function of Tim-3 is to limit immune responses. However, it is still not known to what degree these effects are due to the galectin-9/Tim-3 interaction. In this study, we show that galectin-9 is not limited to the role of a pro-apoptotic agent, but that it can also induce the production of pro-inflammatory cytokines from T helper cells. This effect is dose-dependent and does not require Tim-3. These findings suggest that the effects of galectin-9 on T cells are more complex than previously thought and are mediated by additional receptors apart from Tim-3.


Asunto(s)
Galectinas/metabolismo , Receptores Virales/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Células Cultivadas , Citocinas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Virales/genética
14.
Glycobiology ; 21(1): 6-12, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20864568

RESUMEN

Galectins regulate cellular functions by binding to glycan ligands on cell surface glycoprotein receptors. Prototype galectins, such as galectin-1, are one carbohydrate recognition domain (CRD) monomers that noncovalently dimerize, whereas tandem-repeat galectins, such as galectin-9, have two non-identical CRDs connected by a linker domain. Dimerization of prototype galectins, or both CRDs in tandem-repeat galectins, is typically required for the crosslinking of glycoprotein receptors and subsequent cellular signaling. Several studies have found that tandem-repeat galectins are more potent than prototype galectins in triggering many cell responses, including cell death. These differences could be due to CRD specificity, the presence or absence of a linker domain between CRDs, or both. To interrogate the basis for the increased potency of tandem-repeat galectins compared with prototype galectins in triggering cell death, we created three tandem-repeat galectin constructs with different linker regions joining identical galectin-1 CRDs, so that any differences we observed would be due to the contribution of the linker region rather than due to CRD specificity. We found that random-coil or rigid α-helical linkers that permit separation of the two galectin-1 CRDs facilitated the formation of higher-order galectin multimers and that these galectins were more potent in binding to glycan ligands and cell surface glycoprotein receptors, as well as triggering T cell death, compared with native galectin-1 or a construct with a short rigid linker. Thus, the increased potency of tandem-repeat galectins compared with prototype galectins is likely due to the ability of the linker domain to permit intermolecular CRD interactions, resulting in the formation of higher-order multimers with increased valency, rather than differences in CRD specificity.


Asunto(s)
Galectinas/química , Galectinas/metabolismo , Muerte Celular , Dimerización , Humanos , Células Jurkat , Ligandos , Multimerización de Proteína
15.
Biochim Biophys Acta ; 1790(12): 1599-610, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19664692

RESUMEN

Virtually all cell surface proteins and many cell membrane lipids are glycosylated, creating a cell surface glycocalyx. The glycan chains attached to cell surface glycoproteins and glycolipids are complex structures with specific additions that determine functions of the glycans in cell-cell communication and cell sensing of the environment. One type of specific modification of cell surface glycans is decoration of glycan termini by sialic acids. On T cells, these terminal sialic acid residues are involved in almost every aspect of T cell fate and function, from cell maturation, differentiation, and migration to cell survival and cell death. The roles that sialylated glycans play in T cell development and function, including binding to specific sialic acid-binding lectins, are reviewed here.


Asunto(s)
Diferenciación Celular , Ácidos Siálicos/fisiología , Linfocitos T/fisiología , Animales , Secuencia de Carbohidratos , Diferenciación Celular/inmunología , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timo/crecimiento & desarrollo , Timo/inmunología , Timo/metabolismo
16.
J Biomed Mater Res A ; 108(4): 1016-1027, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31925910

RESUMEN

The applications of a variety of bioactive ceramics such as hydroxyapatite (HA) in orthopedics are limited by their insufficient mechanical properties, especially poor fracture toughness. Thus, further extending the clinical applications of these materials warrants the enhancement of their mechanical properties. Although the reinforcement of ceramics by 2D nanomaterials has been well recognized, integrated structural, mechanical, and functional considerations have been neglected in the design and synthesis of such composite materials. Herein, we report the first use of silica-coated reduced graphene oxide (S-rGO) hybrid nanosheets to create bioceramic-based composites with simultaneously enhanced mechanical and biological properties. In the representative HA-based bioceramic systems prepared by spark plasma sintering, S-rGO incorporation was found to be more effective for increasing the Young's modulus, hardness, and fracture toughness than the incorporation of uncoated reduced GO (rGO). Furthermore, when assessed with osteoblast-like MG-63 cells, such novel materials led to faster cell proliferation and higher cell viability and alkaline phosphatase activity than are generally observed with pure HA; additionally, cells demonstrate stronger affinity to S-rGO/HA than to rGO/HA composites. The S-rGO/bioceramic composites are therefore promising for applications in orthopedic tissue engineering, and this research provides valuable insights into the fabrication of silica-coated hybrid nanosheet-reinforced ceramics.


Asunto(s)
Cerámica/química , Grafito/química , Nanocompuestos/química , Dióxido de Silicio/química , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Durapatita/química , Humanos , Nanotubos/química , Nanotubos/ultraestructura , Polvos , Termogravimetría
17.
ACS Appl Mater Interfaces ; 12(26): 29717-29727, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32517469

RESUMEN

Flexible electronic devices with strain sensing and energy storage functions integrated simultaneously are urgently desirable to detect human motions for potential wearable applications. This paper reports the fabrication of a cotton/carbon nanotube sheath-core yarn deposited with polypyrrole (PPy) for highly multifunctional stretchable wearable electronics. The microscopic structure and morphology of the prepared sheath-core yarn were characterized by scanning electron microscopy and Fourier transform infrared spectrometry. A mechanical experiment demonstrated its excellent stretchable capacity because of its unique spring-like structure. We demonstrate that the sheath-core yarn can be used as wearable strain sensors, exhibiting an ultrahigh strain sensing range (0-350%) and excellent stability. The sheath-core yarn can be used in highly sensitive real time monitoring toward both subtle and large human motions under different conditions. Furthermore, the electrochemical performance of the sheath-core yarn was characterized by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The measured areal capacitance was 761.2 mF/cm2 at the scanning rate of 1 mV/s. The method of spinning technology may lead to new exploitation of CNTs and PPy in future wearable electronic device applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Polímeros/química , Pirroles/química , Espectroscopía Infrarroja por Transformada de Fourier
18.
Chem Commun (Camb) ; 54(95): 13415-13418, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30427325

RESUMEN

Structural analysis showed that cyclosiloxane hybrid polymer (CHP) is a collection of nano-sized nacre-like structures in random orientations. Inspired by the reinforcement of nacre-like materials, basal-functionalized graphene (GO-AA) was inserted between CHP layers, acting as 'double-sided tape' to improve the mechanical properties. The resulting GO-AA/CHP nanocomposites showed a 156% improvement in toughness with only a 0.08 wt% loading of GO-AA, and a 25% improvement in thermal conductivity with a 0.10 wt% loading of GO-AA. The proposed 'double-sided tape' effect was also used to explain the highly efficient enhancement in thermal conductivity. This research promotes the application of CHP in harsher environments, demonstrates its prospects in thermal management areas, and contributes to nature-inspired materials design.

19.
ACS Appl Mater Interfaces ; 9(14): 12851-12858, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28333431

RESUMEN

Monitoring and assessment of the health of a civil structural material are the critical requirements to ensure its safety and durability. In this work, a coating strategy on carbon nanotubes (CNTs) was employed for the dispersion of CNTs in geopolymer matrix. The geopolymer nanocomposites prepared exhibited ultrahigh self-sensing performance based on the unique behaviors of SiO2 coating on CNTs in the geopolymer matrix. The SiO2 layer on CNTs was partially or fully removed during the fabrication process to restore the conductive nature of CNTs, facilitating the dispersion of CNTs and forming well-connected 3D electrical conductive networks. The gauge factor (GF) of geopolymer nanocomposites reached up to 663.3 and 724.6, under compressive and flexural loading, respectively, with the addition of only 0.25 vol % of SiO2-coated CNTs (SiO2-CNTs). The values were at least twice higher than those recently reported self-sensing structural materials containing different types of carbon-based fillers. The underlying mechanisms on the electrical signal change with respect to ionic conduction and electronic conduction were explored and correlated to the self-sensing performance. Additionally, the uniform dispersion of CNTs and good interaction between CNTs and geopolymer matrix contributed to the improvement in flexural and compressive strengths.

20.
J Colloid Interface Sci ; 493: 327-333, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119243

RESUMEN

3D graphene foam was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, we prepared 3D graphene foams by incorporating a surface modification process of graphene via self-polymerization of dopamine with a subsequent foaming process. The multiple roles played by polydopamine (PDA), including as nitrogen doping source and as an enhancement tool to achieve higher extent of reduction of the graphene through providing wider pathways and larger accessible surface areas were discussed in detail. Despite the presence of the PDA which acted as barriers among the graphene layers that hindered the electrons movement, the enhanced reduction of graphene sheets and the polarization effects introduced by PDA decoration compensated the negative effect of the barrier on EMI shielding effectiveness (SE). As a result, the PDA decorated 3D graphene foams showed improved EMI shielding effectiveness (SE) compared to PDA-free graphene foam (from 23.1 to 26.5dB). More significantly, the EMI shielding performance of the PDA decorated graphene foam was much superior to all existing carbon-based porous materials when the thickness of the specimen was considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA