Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Epilepsia ; 65(3): e41-e46, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243753

RESUMEN

Trilostane is a 3ß-hydroxysteroid dehydrogenase/Δ5-4 isomerase inhibitor able to produce a manyfold increase in brain levels of various neurosteroids, including allopregnanolone. We previously found that treatment with trilostane can slow down epileptogenesis in the kainic acid (KA) model of temporal lobe epilepsy. It is unknown whether trilostane may have a similar effect on the progression of epilepsy severity, as observed in KA-treated rats. Consequently, we investigated the effects of trilostane (50 mg/kg/day, 1 week) in epileptic rats, given 64 days after KA administration. Seizures were monitored by video-electrocorticographic recordings before and during the treatment with trilostane or vehicle (sesame oil), and neurosteroid levels were measured in serum and cerebral tissue using liquid chromatography-electrospray tandem mass spectrometry after treatment. Pregnenolone sulfate, pregnenolone, progesterone, 5α-dihydroprogesterone, and allopregnanolone peripheral levels were massively increased by trilostane. With the only exception of hippocampal pregnenolone sulfate, the other neurosteroids augmented in both the neocortex and hippocampus. Only pregnanolone levels were not upregulated by trilostane. As expected, a significant increase in the seizure occurrence was observed in rats receiving the vehicle, but not in the trilostane group. This suggests that the increased availability of neurosteroids produced a disease-modifying effect in the brain of epileptic rats.


Asunto(s)
Epilepsia , Neuroesteroides , Ratas , Animales , Neuroesteroides/farmacología , Pregnanolona/farmacología , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Encéfalo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
2.
Phytother Res ; 38(3): 1400-1461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232725

RESUMEN

Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Estilbenos , Humanos , Resveratrol , Enfermedades Neurodegenerativas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
3.
Curr Neuropharmacol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162293

RESUMEN

INTRODUCTION/OBJECTIVE: Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression. METHODS: A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as "Notch signaling," "neuroglial interactions," and "MS" were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS. RESULTS: This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy. CONCLUSION: This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA