Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(8): e2207089, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36507549

RESUMEN

Mechanoluminescence (ML) materials present widespread applications. Empirically, modulation for a given ML material is achieved by application of programmed mechanical actuation with different amplitude, repetition velocity and frequency. However, to date modulation on the ML is very limited within several to a few hundred hertz low-frequency actuation range, due to the paucity of high-frequency mechanical excitation apparatus. The universality of temporal behavior and frequency response is an important aspect of ML phenomena, and serves as the impetus for much of its applications. Here, we push the study on ML into high-frequency range (∼250 kHz) by combining with piezoelectric actuators. Two representative ML ZnS:Mn and ZnS:Cu, Al phosphors were chosen as the research objects. Time-resolved ML of ZnS:Mn and ZnS:Cu, Al shows unrevealed frequency-dependent saturation and quenching, which is associated with the dynamic processes of traps. From the point of applications, this study sets the cut-off frequency for ML sensing. Moreover, by in-situ tuning the strain frequency, ZnS:Mn exhibits reversible frequency-induced broad red-shift into near-infrared range. These findings offer keen insight into the photophysics nature of ML and also broaden the physical modulation of ML by locally adjusting the excitation frequency.

2.
Opt Lett ; 48(9): 2429-2432, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126290

RESUMEN

We describe a Si-integrated photochromic photomemory based on lanthanide-doped ferroelectric Na0.5Bi2.5Nb2O9:Er3+ (NBN:Er) thin films. We show that upconversion emission can be effectively modulated by up to 78% through the photochromic reaction. The coupling between lanthanide upconversion emission and the photochromic effect ensures rewritable and nondestructive readout characteristics. Moreover, integrating photochromic thin films with Si would benefit from its compatibility with the mature complementary metal-oxide semiconductor (CMOS) technique. These results demonstrate the opportunity to develop more compact photochromic photomemories and related photonic devices.

3.
Opt Lett ; 47(9): 2157-2160, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486748

RESUMEN

A ring-pattern liquid-filled photonic crystal fiber (R-LPCF) scheme, in which the first-ring holes (the six holes adjacent to the core) are filled with high-index inclusions, has been experimentally demonstrated to extend over a wide-guided spectral range. In such new fiber, the bandgap-like core mode is investigated, among which the telecommunication bandgap exhibits confinement losses five orders of magnitude smaller than those of the corresponding fully liquid-filled photonic bandgap fibers. Besides, the R-LPCF serving the thermal tunability when filled with index-matching liquid enables guided bandwidth switching from the 1.5-µm-band to the 1.3-µm-band communication window. Moreover, the structural parameters for two commercial photonic crystal fiber are quantified to confirm the feasibility of the proposed method.

4.
ACS Nano ; 17(23): 24033-24041, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014834

RESUMEN

The emergence of the wide-band-gap semiconductor Ga2O3 has propelled it to the forefront of solar blind detection activity owing to its key features. Although various architectures and designs of Ga2O3-based solar blind photodetectors have been proposed, their performance still falls short of commercial standards. In this study, we demonstrate a method to enhance the performance of a simple metal-semiconductor-metal-structured Ga2O3-based solar blind photodetector by exciting acoustic surface waves. Specifically, we demonstrate that under a bias voltage of 100 mV and a radio frequency signal of 20 dBm, the responsivity and detectivity can increase from 2.78 to 1.65 × 104 A/W and from 8.35 × 1014 to 2.66 × 1016 jones, respectively, rivaling a commercial photomultiplier tube. The over 5 × 103-fold enhancement in responsivity could be attributed to the acousto-photoelectric coupling mechanism. Furthermore, since surface acoustic waves can also serve as signal receivers, such photodetectors offer the prospect of dual-mode detection. Our findings reveal a promising pathway for achieving high-performance Ga2O3-based electronics and optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA