Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 84(1): 157-169, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31815322

RESUMEN

PURPOSE: Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. METHODS: Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. RESULTS: The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CONCLUSION: CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging.


Asunto(s)
Vasos Coronarios , Angiografía por Resonancia Magnética , Vasos Coronarios/diagnóstico por imagen , Corazón , Humanos , Imagenología Tridimensional , Estudios Multicéntricos como Asunto , Respiración
2.
Magn Reson Med ; 81(1): 220-233, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30058085

RESUMEN

PURPOSE: To develop high-spatial-resolution cardiac T2 mapping that allows for a reduced acquisition time while maintaining its precision. We implemented and optimized a new golden-angle radial T2 mapping technique named SKRATCH (Shared k-space Radial T2 Characterization of the Heart) that shares k-space peripheries of T2 -weighted images while preserving their contrasts. METHODS: Six SKRATCH variants (gradient-recalled echo and balanced SSFP, free-breathing and breath-held, with and without a saturation preparation) were implemented, and their precision was compared with a navigator-gated reference technique in phantoms and 22 healthy volunteers at 3 T. The optimal breath-held SKRATCH technique was applied in a small cohort of patients with subacute myocardial infarction. RESULTS: The faster free-breathing SKRATCH technique reduced the acquisition time by 52.4%, while maintaining the precision and spatial resolution of the reference technique. Similarly, the most precise and robust breath-held SKRATCH technique demonstrated homogenous T2 values that did not significantly differ from the navigator-gated reference (T2 = 39.9 ± 3.4 ms versus 39.5 ± 3.4 ms, P > .20, respectively). All infarct patients demonstrated a large T2 elevation in the ischemic regions of the myocardium. CONCLUSION: The optimized SKRATCH technique enabled the accelerated acquisition of high-spatial-resolution T2 maps, was validated in healthy adult volunteers, and was successfully applied to a small initial group of patients.


Asunto(s)
Corazón/diagnóstico por imagen , Infarto del Miocardio/diagnóstico por imagen , Respiración , Adulto , Anciano , Algoritmos , Contencion de la Respiración , Medios de Contraste , Electrocardiografía , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Teóricos , Miocardio , Variaciones Dependientes del Observador , Fantasmas de Imagen , Reproducibilidad de los Resultados , Investigación Biomédica Traslacional , Adulto Joven
3.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968657

RESUMEN

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Psicotrópicos/farmacología , Receptores AMPA/metabolismo , Regulación Alostérica , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/ultraestructura , Discapacidad Intelectual/patología , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
4.
J Surg Oncol ; 116(8): 1069-1078, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28977682

RESUMEN

OBJECTIVES: To assess the role in predicting nipple-areola complex (NAC) involvement of a newly developed automatic method which computes the 3D tumor-NAC distance. PATIENTS AND METHODS: Ninety-nine patients scheduled to nipple sparing mastectomy (NSM) underwent magnetic resonance (MR) examination at 1.5 T, including sagittal T2w and dynamic contrast enhanced (DCE)-MR imaging. An automatic method was developed to segment the NAC and the tumor and to compute the 3D distance between them. The automatic measurement was compared with manual axial and sagittal 2D measurements. NAC involvement was defined by the presence of invasive ductal or lobular carcinoma and/or ductal carcinoma in situ or ductal intraepithelial neoplasia (DIN1c - DIN3). RESULTS: Tumor-NAC distance was computed on 95/99 patients (25 NAC+), as three tumors were not correctly segmented (sensitivity = 97%), and 1 NAC was not detected (sensitivity = 99%). The automatic 3D distance reached the highest area under the receiver operating characteristic (ROC) curve (0.830) with respect to the manual axial (0.676), sagittal (0.664), and minimum distances (0.664). At the best cut-off point of 21 mm, the 3D distance obtained sensitivity = 72%, specificity = 80%, positive predictive value = 56%, and negative predictive value = 89%. CONCLUSIONS: This method could provide a reproducible biomarker to preoperatively select breast cancer patients candidates to NSM, thus helping surgical planning and intraoperative management of patients.


Asunto(s)
Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Pezones/patología , Femenino , Humanos , Mastectomía Subcutánea , Persona de Mediana Edad , Pezones/cirugía
5.
Cereb Cortex ; 26(2): 873-890, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582364

RESUMEN

Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons.


Asunto(s)
Conducta Animal/fisiología , Neuronas GABAérgicas/fisiología , Hipocampo/citología , Red Nerviosa/metabolismo , Proteínas de Unión al GTP rac/deficiencia , Proteína de Unión al GTP rac1/deficiencia , Adaptación Ocular/genética , Animales , Condicionamiento Clásico/fisiología , Emociones/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/genética
6.
J Am Soc Nephrol ; 27(7): 1958-69, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26534924

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.


Asunto(s)
Desoxiglucosa/uso terapéutico , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones
7.
Brain Behav Immun ; 45: 263-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25499583

RESUMEN

Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Acidosis/metabolismo , Encéfalo/metabolismo , Diminazeno/análogos & derivados , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diminazeno/farmacología , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Terminales Presinápticos/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos
8.
Reprod Biol Endocrinol ; 12: 110, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25421073

RESUMEN

BACKGROUND: Human mature oocytes are very susceptible to cryodamage. Several reports demonstrated that vitrification might preserve oocyte better than slow freezing. However, this is still controversial. Thus, larger clinical, biological and experimental trials to confirm this concept are necessary. The aim of the study was to evaluate and compare fine morphological features in human mature oocytes cryopreserved with either slow freezing or vitrification. METHODS: We used 47 supernumerary human mature (metaphase II) oocytes donated by consenting patients, aged 27-32 years, enrolled in an IVF program. Thirtyfive oocytes were cryopreserved using slow freezing with 1.5 M propanediol +0.2 M sucrose concentration (20 oocytes) or a closed vitrification system (CryoTip Irvine Scientific CA) (15 oocytes). Twelve fresh oocytes were used as controls. All samples were prepared for light and transmission electron microscopy evaluation. RESULTS: Control, slow frozen/thawed and vitrified/warmed oocytes (CO, SFO and VO, respectively) were rounded, 90-100 µm in diameter, with normal ooplasm showing uniform distribution of organelles. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and small mitochondria-vesicle (MV) complexes were the most numerous structures found in all CO, SFO and VO cultured for 3-4 hours. M-SER aggregates decreased, and large MV complexes increased in those SFO and VO maintained in culture for a prolonged period of time (8-9 hours). A slight to moderate vacuolization was present in the cytoplasm of SFO. Only a slight vacuolization was present in VO, whereas vacuoles were almost completely absent in CO. Amount and density of cortical granules (CG) appeared abnormally reduced in SFO and VO, irrespective of the protocol applied. CONCLUSIONS: Even though, both slow freezing and vitrification ensured a good overall preservation of the oocyte, we found that: 1) prolonged culture activates an intracellular membrane "recycling" that causes the abnormal transformation of the membranes of the small MV complexes and of SER into larger rounded vesicles; 2) vacuolization appears as a recurrent form of cell damage during slow freezing and, at a lesser extent, during vitrification using a closed device; 3) premature CG exocytosis was present in both SFO and VO and may cause zona pellucida hardening.


Asunto(s)
Criopreservación/métodos , Congelación , Oocitos/citología , Vitrificación , Adulto , Forma de la Célula , Células Cultivadas , Criopreservación/instrumentación , Vesículas Citoplasmáticas/ultraestructura , Retículo Endoplásmico Liso/ultraestructura , Femenino , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Oocitos/ultraestructura , Vacuolas/ultraestructura
9.
Am J Hum Genet ; 86(2): 185-95, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20159109

RESUMEN

Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5' splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities.


Asunto(s)
Trastorno Autístico/complicaciones , Anomalías Craneofaciales/complicaciones , Epilepsia/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación/genética , Proteínas de Unión al GTP rab/genética , Animales , Trastorno Autístico/genética , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular , Anomalías Craneofaciales/genética , Análisis Mutacional de ADN , Regulación hacia Abajo/genética , Epilepsia/genética , Femenino , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuronas/patología , Especificidad de Órganos/genética , Linaje , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Sinapsis/genética
10.
Am J Pathol ; 180(3): 1121-1135, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22234171

RESUMEN

Protein synthesis is a tightly regulated, energy-consuming process. The control of mRNA translation into protein is fundamentally important for the fine-tuning of gene expression; additionally, precise translational control plays a critical role in many cellular processes, including development, cellular growth, proliferation, differentiation, synaptic plasticity, memory, and learning. Eukaryotic translation initiation factor 4h (Eif4h) encodes a protein involved in the process of protein synthesis, at the level of initiation phase. Its human homolog, WBSCR1, maps on 7q11.23, inside the 1.6 Mb region that is commonly deleted in patients affected by the Williams-Beuren syndrome, which is a complex neurodevelopmental disorder characterized by cardiovascular defects, cerebral dysplasias and a peculiar cognitive-behavioral profile. In this study, we generated knockout mice deficient in Eif4h. These mice displayed growth retardation with a significant reduction of body weight that began from the first week of postnatal development. Neuroanatomical profiling results generated by magnetic resonance imaging analysis revealed a smaller brain volume in null mice compared with controls as well as altered brain morphology, where anterior and posterior brain regions were differentially affected. The inactivation of Eif4h also led to a reduction in both the number and complexity of neurons. Behavioral studies revealed severe impairments of fear-related associative learning and memory formation. These alterations suggest that Eif4h might contribute to certain deficits associated with Williams-Beuren syndrome.


Asunto(s)
Factores Eucarióticos de Iniciación/deficiencia , Factores Eucarióticos de Iniciación/genética , Trastornos del Crecimiento/genética , Discapacidades para el Aprendizaje/genética , Trastornos de la Memoria/genética , Síndrome de Williams/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Condicionamiento Psicológico/fisiología , Factores Eucarióticos de Iniciación/metabolismo , Conducta Exploratoria/fisiología , Miedo , Femenino , Eliminación de Gen , Heterocigoto , Masculino , Ratones , Ratones Noqueados , Fatiga Muscular/genética , Mutagénesis Insercional , Tamaño de los Órganos , Desempeño Psicomotor/fisiología , ARN Mensajero/metabolismo , Síndrome de Williams/psicología
11.
Biofouling ; 28(9): 969-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22971211

RESUMEN

Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.


Asunto(s)
Actinobacteria/aislamiento & purificación , Amebozoos/aislamiento & purificación , Incrustaciones Biológicas , Membranas Artificiales , Ósmosis , Ríos , Purificación del Agua/métodos , Actinobacteria/clasificación , Actinobacteria/genética , Amebozoos/clasificación , Amebozoos/genética , Biopelículas/crecimiento & desarrollo , Ingestión de Líquidos , Filtración/métodos , Genes de ARNr , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Ríos/microbiología , Ríos/parasitología , Ultrafiltración/métodos
12.
Hum Mol Genet ; 18(1): 105-17, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829665

RESUMEN

The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes alphaGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of alphaGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in human.


Asunto(s)
Cognición , Inhibidores de Disociación de Guanina Nucleótido/genética , Aprendizaje , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Plasticidad Neuronal , Vesículas Sinápticas/fisiología , Animales , Femenino , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Hipocampo/metabolismo , Masculino , Memoria , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Discapacidad Intelectual Ligada al Cromosoma X/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/genética , Sinapsis/metabolismo , Vesículas Sinápticas/genética
13.
Cancers (Basel) ; 13(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498737

RESUMEN

INTRODUCTION: Ductal carcinoma in situ (DCIS) is an intraductal neoplastic proliferation of epithelial cells that are confined within the basement membrane of the breast ductal system. This retrospective observational analysis aims at reviewing the issues of this histological type of cancer. MATERIALS AND METHODS: Patients treated for DCIS between 1 January 2009 and 31 December 2018 were identified from a retrospective database. The patients were divided into two groups of 5 years each, the first group including patients treated from 2009 to 2013, and the second group including patients treated from 2014 to 2018. Once the database was completed, we performed a statistical analysis to see if there were significant differences among the 2 periods. Statistical analyses were performed using GraphPad Prism software for Windows, and the level of significance was set at p < 0.05. RESULTS: 3586 female patients were treated for breast cancer over the 9-year study period (1469 patients from 2009 to 2013 and 2117 from 2014 to 2018), of which 270 (7.53%) had pure DCIS in the final pathology. The median age of diagnosis was 59-year-old (range 36-86). In the first period, 81 (5.5%) women out of 1469 had DCIS in the final pathology, in the second, 189 (8.9%) out of 2117 had DCIS in the final pathology with a statistically significant increase (p = 0.0001). From 2009 to 2013, only 38 (46.9%) were in stage 0 (correct DCIS diagnosis) while in the second period, 125 (66.1%) were included in this stage. The number of patients included in clinical stage 0 increased significantly (p = 0.004). In the first period, 48 (59.3%) specimen margins were at a greater or equal distance than 2 mm (negative margins), between 2014 and 2018; 137 (72.5%) had negative margins. Between 2014 and 2018 the number of DCIS patients with positive margins decreased significantly (p = 0.02) compared to the first period examined. The mastectomies number increased significantly (p = 0.008) between the 2 periods, while the sentinel lymph node biopsy (SLNB) numbers had no differences (p = 0.29). For both periods analysed all the 253 patients who underwent the follow up are currently living and free of disease. We have conventionally excluded the 17 patients whose data were lost. Conclusion: The choice of the newest imaging techniques and the most suitable biopsy method allows a better pre-operative diagnosis of the DCIS. Surgical treatment must be targeted to the patient and a multidisciplinary approach discussed in the Breast Unit centres.

14.
Metabolism ; 116: 154463, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309713

RESUMEN

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Asunto(s)
Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Inhibidores de Disociación de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Trastornos de la Memoria/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Desoxiglucosa/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Glucosa/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/deficiencia , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/genética , Ratones , Ratones Noqueados
15.
Breast J ; 16 Suppl 1: S26-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21050305

RESUMEN

Sentinel lymph node (SLN) biopsy is the standard procedure for axillary node staging in breast cancer. Improvements in histopathological analysis and immunohistochemistry have recently increased the rate of detection of lymph nodal micrometastases. The clinical implications and prognostic significance of micrometastases in SLN still remain a controversial issue. Literature review was analyzed by searches of Medline and PubMed data bases. Whereas most studies carried on small groups of patients did not show differences in survival, recently some studies with longer follow-up and with larger populations demonstrated that prognosis of patients with micrometastases is worse compared to that of patients with SLN free of disease. To date, completion axillary dissection remains the standard option when a macro or micrometastasis (0.2-2 mm) in the SLN is found. However, in absence of level-1 evidence guidelines, each case requires discussion in the context of a multi-disciplinary team.


Asunto(s)
Neoplasias de la Mama/patología , Biopsia del Ganglio Linfático Centinela , Axila/patología , Axila/cirugía , Neoplasias de la Mama/mortalidad , Femenino , Humanos , Escisión del Ganglio Linfático , Metástasis Linfática , Recurrencia Local de Neoplasia , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Clin Obstet Gynecol ; 53(4): 763-74, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21048443

RESUMEN

The aim of this chapter is to evaluate the current situation concerning oocyte freezing. Clinical outcome using slow cooling and vitrification was assessed in the literature and in our clinic to evaluate possible differences using either of the protocols. Both techniques were successfully applied with a comparable number of healthy babies being born using either of the protocols. Nevertheless, slow cooling has been widely applied whereas vitrification has been primarily used in egg donor programs thereby influencing the outcome rates. A randomized study in a comparable group of patients would be appropriate to define the best protocol to apply.


Asunto(s)
Criopreservación/métodos , Oocitos , Femenino , Fertilización In Vitro , Humanos , Oocitos/fisiología , Vitrificación
17.
J Assist Reprod Genet ; 27(4): 131-40, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20177770

RESUMEN

PURPOSE: To ascertain possible cell damage from cryopreservation, the ultrastructure of human oocytes cryopreserved by slow cooling was assessed. MATERIALS AND METHODS: Cryopreservation was performed through two protocols with one-step or two-step propanediol. Fresh control oocytes were examined for comparison. Samples were processed for transmission electron microscopy analysis. RESULTS: By light microscopy, both fresh and frozen-thawed oocytes appeared regularly rounded, with intact zona pellucida, and homogeneous cytoplasm. By electron microscopy observation, organelles were abundant and uniformly dispersed. Mitochondria-smooth endoplasmic reticulum associations appeared regular. However, both the amount and density of cortical granules appeared abnormally reduced in frozen-thawed samples. Slight to moderate vacuolization was also found in the ooplasm of oocytes of both frozen groups. CONCLUSIONS: Slow cooling ensures a good overall preservation of human oocytes. However, cytoplasmic vacuolization and cortical granule loss appears associated with cryopreservation, irrespective of the protocol used.


Asunto(s)
Criopreservación , Crioprotectores/farmacología , Oocitos , Preservación de Órganos , Glicoles de Propileno/farmacología , Adulto , Gránulos Citoplasmáticos/ultraestructura , Retículo Endoplásmico Liso/ultraestructura , Femenino , Congelación , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura
18.
Mol Neurobiol ; 56(7): 4838-4854, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30402709

RESUMEN

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain. As most models of Mecp2, the Mecp2Y120D mouse develops a severe Rett-like phenotype. This mutation alters the interaction of the protein with chromatin, but surprisingly, it also impairs its association with corepressors independently on the involved interacting domains. These features, which become overt mainly in the mature brain, cause a more accessible and transcriptionally active chromatin structure; conversely, in the Mecp2-null brain, we find a less accessible and transcriptionally inactive chromatin. By demonstrating that different MECP2 mutations can produce concordant neurological phenotypes but discordant molecular features, we highlight the importance of considering personalized approaches for the treatment of Rett syndrome.


Asunto(s)
Conducta Animal , Técnicas de Sustitución del Gen , Proteína 2 de Unión a Metil-CpG/metabolismo , Medicina de Precisión , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cromatina/metabolismo , Femenino , Humanos , Longevidad , Masculino , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Neuronas/metabolismo , Fenotipo , Síndrome de Rett
19.
Mol Neurobiol ; 54(4): 2458-2468, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26971292

RESUMEN

X-linked non-syndromic intellectual disability (XLID) is a common mental disorder recognized by cognitive and behavioral deficits. Mutations in the brain-specific αGDI, shown to alter a subset of RAB GTPases redistribution in cells, are linked to XLID, likely via changes in vesicle traffic in neurons. Here, we show directly that isolated XLID mice astrocytes, devoid of pathologic tissue environment, exhibit vesicle mobility deficits. Contrary to previous studies, we show that astrocytes express two GDI proteins. The siRNA-mediated suppression of expression of αGDI especially affected vesicle dynamics. A similar defect was recorded in astrocytes from the Gdi1 -/Y mouse model of XLID and in astrocytes with recombinant mutated human XLID αGDI. Endolysosomal vesicles studied here are involved in the release of gliosignaling molecules as well as in regulating membrane receptor density; thus, the observed changes in astrocytic vesicle mobility may, over the long time-course, profoundly affect signaling capacity of these cells, which optimize neural activity.


Asunto(s)
Astrocitos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Genes Ligados a X , Inhibidores de Disociación de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Endosomas/metabolismo , Silenciador del Gen , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Mutación/genética , Ratas , Transfección
20.
Neuroscience ; 344: 346-359, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28057534

RESUMEN

RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients.


Asunto(s)
Lóbulo Frontal/fisiopatología , Inhibidores de Disociación de Guanina Nucleótido/deficiencia , Discapacidad Intelectual/fisiopatología , Neostriado/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Animales , Aprendizaje por Asociación/fisiología , Atención/fisiología , Condicionamiento Psicológico/fisiología , Discriminación en Psicología/fisiología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Lóbulo Frontal/diagnóstico por imagen , Inhibidores de Disociación de Guanina Nucleótido/genética , Inhibición Psicológica , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/psicología , Masculino , Ratones Noqueados , Neostriado/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Distribución Aleatoria , Vesículas Sinápticas/metabolismo , Percepción del Tiempo/fisiología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA