Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 208(8): 2054-2066, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35379749

RESUMEN

Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.


Asunto(s)
Colitis , Encefalitis , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Proteínas Portadoras , Colitis/patología , Modelos Animales de Enfermedad , Gliosis/complicaciones , Gliosis/patología , Proteínas de Homeodominio/genética , Humanos , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Ácido Retinoico , Células Th17/metabolismo
2.
J Biol Chem ; 298(8): 102245, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835216

RESUMEN

Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIß. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIß phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIß phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIß phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIß regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Núcleo Accumbens , Estrés Fisiológico , Transmisión Sináptica , Animales , Cuerpo Estriado/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Glutamatos/metabolismo , Núcleo Accumbens/fisiología , Ratas , Transducción de Señal , Estrés Fisiológico/fisiología
3.
Brain Behav Immun ; 114: 173-186, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625556

RESUMEN

Depression can be associated with chronic systemic inflammation, and production of peripheral proinflammatory cytokines and upregulation of the kynurenine pathway have been implicated in pathogenesis of depression. However, the mechanistic bases for these comorbidities are not yet well understood. As tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), which convert tryptophan to kynurenine, are rate-limiting enzymes of the kynurenine pathway, we screened TDO or IDO inhibitors for effects on the production of proinflammatory cytokines in a mouse macrophage cell line. The TDO inhibitor 680C91 attenuated LPS-induced pro-inflammatory cytokines including IL-1ß and IL-6. Surprisingly, this effect was TDO-independent, as it occurred even in peritoneal macrophages from TDO knockout mice. Instead, the anti-inflammatory effects of 680C91 were mediated through the suppression of signal transducer and activator of transcription(STAT) signaling. Furthermore, 680C91 suppressed production of proinflammatory cytokines and STAT signaling in an animal model of inflammatory bowel disease. Specifically, 680C91 effectively attenuated acute phase colon cytokine responses in male mice subjected to dextran sulfate sodium (DSS)-induced colitis. Interestingly, this treatment also prevented the development of anxiodepressive-like neurobehaviors in DSS-treated mice during the recovery phase. The ability of 680C91 to prevent anxiodepressive-like behavior in response to chemically-induced colitis appeared to be due to rescue of attenuated dopamine responses in the nucleus accumbens. Thus, inhibition of STAT-mediated, but TDO-independent proinflammatory cytokines in macrophages can prevent inflammation-associated anxiety and depression. Identification of molecular mechanisms involved may facilitate the development of new treatments for gastrointestinal-neuropsychiatric comorbidity.


Asunto(s)
Colitis , Citocinas , Masculino , Ratones , Animales , Citocinas/metabolismo , Quinurenina/metabolismo , Colitis/inducido químicamente , Triptófano/metabolismo , Inflamación/inducido químicamente , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Sulfato de Dextran
4.
Proc Natl Acad Sci U S A ; 117(31): 18401-18411, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690709

RESUMEN

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamiento farmacológico , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Xenoinjertos , Humanos , Ratones , Neoplasias/genética , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fosforilación
5.
Oncologist ; 26(4): e608-e621, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33284507

RESUMEN

Gamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors. Disappointing clinical performance to date reflects important questions that remain to be answered. For example, what is the net impact of these agents on antitumor immune responses, and will they require concurrent targeting of tumor-intrinsic compensatory pathways? Addressing these limitations in our current understanding of GSI mechanisms will undoubtedly facilitate their rational incorporation into combinatorial strategies and provide a valuable tool with which to combat Notch-dependent cancers. In the present review, we provide a current understanding of GSI mechanisms, discuss clinical performance to date, and suggest areas for future investigation that might maximize the utility of these agents. IMPLICATIONS FOR PRACTICE: The performance of gamma secretase inhibitors (GSIs) in clinical trials generally has not reflected their encouraging performance in preclinical studies. This review provides a current perspective on the clinical performance of GSIs across various solid tumor types alongside putative mechanisms of antitumor activity. Through exploration of outstanding gaps in knowledge as well as reasons for success in certain cancer types, the authors identify areas for future investigation that will likely enable incorporation of GSIs into rational combinatorial strategies for superior tumor control and patient outcomes.


Asunto(s)
Antineoplásicos , Neoplasias , Secretasas de la Proteína Precursora del Amiloide/farmacología , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Antineoplásicos/uso terapéutico , Apoptosis , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Receptores Notch/uso terapéutico
6.
J Neurosci ; 36(13): 3709-21, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030757

RESUMEN

Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT: The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function.


Asunto(s)
Adenosina/metabolismo , Homeostasis/fisiología , Red Nerviosa/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Sueño/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Adenosina Quinasa/genética , Adenosina Quinasa/inmunología , Adenosina Quinasa/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Antagonistas de Estrógenos/farmacología , Hipocampo/citología , Hipocampo/fisiología , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Receptor de Adenosina A1/genética , Receptor de Adenosina A1/metabolismo , Sueño/genética , Tamoxifeno/farmacología , Factores de Tiempo
7.
J Biol Chem ; 290(26): 16319-29, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25971971

RESUMEN

Metabotropic (slow) and ionotropic (fast) neurotransmission are integrated by intracellular signal transduction mechanisms involving protein phosphorylation/dephosphorylation to achieve experience-dependent alterations in brain circuitry. ERK is an important effector of both slow and fast forms of neurotransmission and has been implicated in normal brain function and CNS diseases. Here we characterize phosphorylation of the ERK-activating protein kinase MEK1 by Cdk5, ERK, and Cdk1 in vitro in intact mouse brain tissue and in the context of an animal behavioral paradigm of stress. Cdk5 only phosphorylates Thr-292, whereas ERK and Cdk1 phosphorylate both Thr-292 and Thr-286 MEK1. These sites interact in a kinase-specific manner and inhibit the ability of MEK1 to activate ERK. Thr-292 and Thr-286 MEK1 are phosphorylated in most mouse brain regions to stoichiometries of ~5% or less. Phosphorylation of Thr-292 MEK1 is regulated by cAMP-dependent signaling in mouse striatum in a manner consistent with negative feedback inhibition in response to ERK activation. Protein phosphatase 1 and 2A contribute to the maintenance of the basal phosphorylation state of both Thr-292 and Thr-286 MEK1 and that of ERK. Activation of the NMDA class of ionotropic glutamate receptors reduces inhibitory MEK1 phosphorylation, whereas forced swim, a paradigm of acute stress, attenuates Thr-292 MEK1 phosphorylation. Together, the data indicate that these inhibitory MEK1 sites phosphorylated by Cdk5 and ERK1 serve as mechanistic points of convergence for the regulation of ERK signaling by both slow and fast neurotransmission.


Asunto(s)
Encéfalo/enzimología , MAP Quinasa Quinasa 1/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación
8.
J Neurochem ; 138(2): 317-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26998748

RESUMEN

Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation. Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuronas/metabolismo , Animales , Calpaína/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas tau/metabolismo
9.
J Neurosci ; 34(24): 8259-67, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920629

RESUMEN

Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Animales , Calpaína/farmacología , Muerte Celular/genética , Muerte Celular/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Estrógenos/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipoxia/fisiopatología , Técnicas In Vitro , Infarto de la Arteria Cerebral Media/terapia , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Fosfotransferasas , Ratas , Ratas Sprague-Dawley , Sales de Tetrazolio , Factores de Tiempo , Activador de Tejido Plasminógeno/uso terapéutico
10.
J Mol Cell Cardiol ; 67: 86-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24361238

RESUMEN

cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38ß. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.


Asunto(s)
Contracción Muscular/fisiología , Miocitos Cardíacos/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Activación Enzimática/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Interferencia de ARN , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología
11.
Dev Biol ; 378(2): 94-106, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23583582

RESUMEN

The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Oligodendroglía/citología , Nervio Óptico/citología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Interferencia de ARN , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
12.
J Biol Chem ; 288(25): 18047-57, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23645679

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39(-/-) mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Quinasa 5 Dependiente de la Ciclina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Proteínas Ligadas a Lípidos , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Vaina de Mielina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Circ Res ; 108(4): 437-45, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21233454

RESUMEN

RATIONALE: Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling. OBJECTIVE: To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts. METHODS AND RESULTS: We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice. Calcineurin-dependent transcript levels and nuclear occupancy of the NFAT (nuclear factor of activated T cells) regularly fluctuated as much as 20-fold over the course of a day, peaking in the morning when mice enter a period of rest. Phosphorylation of the protein phosphatase 1 inhibitor 1 (I-1), a direct calcineurin substrate, and phospholamban, an indirect target, oscillated directly out of phase with calcineurin-dependent signaling. Using a surgical model of cardiac pressure overload, we found that although calcineurin-dependent activities were markedly elevated, the circadian pattern of activation was maintained, whereas, oscillations in phospholamban and I-1 phosphorylation were lost. Changes in the expression of fetal gene markers of heart failure did not mirror the rhythm in calcineurin/NFAT activation, suggesting that these may not be direct transcriptional target genes. Cardiac function in mice subjected to pressure overload was significantly lower in the morning than in the evening when assessed by echocardiography. CONCLUSIONS: Normal, opposing circadian oscillations in calcineurin-dependent activities and phosphorylation of proteins that regulate contractility are disrupted in heart failure.


Asunto(s)
Calcineurina/fisiología , Ritmo Circadiano/fisiología , Insuficiencia Cardíaca/metabolismo , Hemodinámica/fisiología , Proteínas/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Factores de Transcripción NFATC/metabolismo , Fosforilación/fisiología , Proteína Fosfatasa 1/metabolismo
14.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398342

RESUMEN

Mechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters. Each of the two models elicits distinct growth differences that recapitulate the less or more aggressive forms of human tumors. The comparative mutational and transcriptomic landscape of tumors revealed significant alterations in mitotic cell cycle processes coupled with the slow-growing tumor phenotype. Conversely, perturbation in metabolic pathways emerged as critical for aggressive tumor growth. Moreover, an overlapping mutational profile was identified between mouse and human tumors. Gene prioritization revealed putative downstream effectors of Cdk5 which may contribute to the slow and aggressive growth in the mouse MTC models. In addition, Cdk5/p25 phosphorylation sites identified as biomarkers for Cdk5-driven neuroendocrine tumors (NETs) were detected in both slow and rapid onset models and were also histologically present in human MTC. Thus, this study directly relates mouse and human MTC models and uncovers vulnerable pathways potentially responsible for differential tumor growth rates. Functional validation of our findings may lead to better prediction of patient-specific personalized combinational therapies.

15.
Sci Rep ; 13(1): 3394, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854738

RESUMEN

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismos Craneocerebrales , Quinasa 5 Dependiente de la Ciclina , Animales , Ratas , Encéfalo , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Traumatismos Craneocerebrales/genética , Traumatismos Craneocerebrales/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo
16.
J Neurochem ; 123(1): 124-34, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22757753

RESUMEN

Mice with a mutation in the Clock gene (ClockΔ19) have a number of behavioral phenotypes that suggest alterations in dopaminergic transmission. These include hyperactivity, increased exploratory behavior, and increased reward value for drugs of abuse. However, the complex changes in dopaminergic transmission that underlie the behavioral abnormalities in these mice remain unclear. Here we find that a loss of CLOCK function increases dopamine release and turnover in striatum as indicated by increased levels of metabolites HVA and DOPAC, and enhances sensitivity to dopamine receptor antagonists. Interestingly, this enlarged dopaminergic tone results in downstream changes in dopamine receptor (DR) levels with a surprising augmentation of both D1- and D2-type DR protein, but a significant shift in the ratio of D1 : D2 receptors in favor of D2 receptor signaling. These effects have functional consequences for both behavior and intracellular signaling, with alterations in locomotor responses to both D1-type and D2-type specific agonists and a blunted response to cAMP activation in the ClockΔ19 mutants. Taken together, these studies further elucidate the abnormalities in dopaminergic transmission that underlie mood, activity, and addictive behaviors.


Asunto(s)
Proteínas CLOCK/genética , Regulación de la Expresión Génica/genética , Mutación/genética , Receptores Dopaminérgicos/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Análisis de Varianza , Animales , Colforsina/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Homovanílico/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
17.
Front Pharmacol ; 13: 863762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645825

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.

18.
Cell Rep ; 40(7): 111218, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977518

RESUMEN

Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.


Asunto(s)
Adenilato Quinasa , Carcinoma Neuroendocrino , Adenilato Quinasa/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Metabolismo Energético , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Fosforilación , Succinatos
19.
Front Nutr ; 9: 929446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105576

RESUMEN

Investigations into the causative role that western dietary patterns have on obesity and disease pathogenesis have speculated that quality and quantity of dietary fats and/or carbohydrates have a predictive role in the development of these disorders. Standard reference diets such as the AIN-93 rodent diet have historically been used to promote animal health and reduce variation of results across experiments, rather than model modern human dietary habits or nutrition-related pathologies. In rodents high-fat diets (HFDs) became a classic tool to investigate diet-induced obesity (DIO). These murine diets often relied on a single fat source with the most DIO consistent HFDs containing levels of fat up to 45-60% (kcal), higher than the reported human intake of 33-35% (kcal). More recently, researchers are formulating experimental animal (pre-clinical) diets that reflect mean human macro- and micronutrient consumption levels described by the National Health and Nutrition Examination Survey (NHANES). These diets attempt to integrate relevant ingredient sources and levels of nutrients; however, they most often fail to include high-fructose corn syrup (HFCS) as a source of dietary carbohydrate. We have formulated a modified Standard American Diet (mSAD) that incorporates relevant levels and sources of nutrient classes, including dietary HFCS, to assess the basal physiologies associated with mSAD consumption. Mice proffered the mSAD for 15 weeks displayed a phenotype consistent with metabolic syndrome, exhibiting increased adiposity, fasting hyperglycemia with impaired glucose and insulin tolerance. Metabolic alterations were evidenced at the tissue level as crown-like structures (CLS) in adipose tissue and fatty acid deposition in the liver, and targeted 16S rRNA metagenomics revealed microbial compositional shifts between dietary groups. This study suggests diet quality significantly affects metabolic homeostasis, emphasizing the importance of developing relevant pre-clinical diets to investigate chronic diseases highly impacted by western dietary consumption patterns.

20.
J Neurosci ; 30(45): 14987-92, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068302

RESUMEN

Many mental disorders and neurodegenerative and neurodevelopmental diseases involve cognitive deficits. Remarkable advances and new technologies are providing a clearer picture of the molecular basis of cognition. In conjunction with an SFN2010 symposium, we provided here a brief overview of the molecular mechanisms of cognition, with emphasis on the development of treatments for cognitive disorders. Activity-dependent changes in gene expression and protein synthesis integrate with synapse selection to form memory circuits. A neuronal activity-dependent molecular tagging system that uses the gene expression program to record memory circuit formation represents one new tool to study cognition. Regulation of protein translation, protein degradation, cytoskeletal dynamics, extracellular matrix interactions, second messenger signaling, and neurotransmitter receptor trafficking and function are all components of synaptic remodeling essential for cognition. Selective targeting of specific effectors in these processes, such as NMDA receptors, may serve as an effective strategy to treat cognitive deficits.


Asunto(s)
Cognición/fisiología , Aprendizaje/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Epigénesis Genética , Expresión Génica , Humanos , Neuronas/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA