Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Gynecol Obstet ; 294(4): 797-804, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091196

RESUMEN

PURPOSE: Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. METHODS: Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. RESULTS: Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. CONCLUSION: Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.


Asunto(s)
Células Epiteliales/metabolismo , Papillomavirus Humano 16/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Vitamina K 3/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias del Cuello Uterino/patología
2.
Cell Immunol ; 293(1): 22-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25497972

RESUMEN

Vulvovaginal candidiasis (VVC) is characterized by an infection of the vulva and vagina, mainly caused by Candida albicans, a commensal microorganism that inhabits the vaginal, digestive, and respiratory mucosae. Vulvovaginal candidiasis affects approximately 75% of women, and 5% develop the recurrent form (RVVC). The aim of the present study was to evaluate whether neutrophils microbicidal response is triggered when activated with RVVC isolates caused by C. albicans. Our results showed that RVVC isolates induced neutrophil migration but significantly decrease the microbicidal activity of neutrophils, compared with VVC and ASS isolates. The microbicidal activity of neutrophils is highly dependent on the production of reactive oxygen species/reactive nitrogen species (ROS/RNS). However, this isolate induced detoxification of ROS/RNS produced by neutrophils, reflected by the high level of thiol groups and by the oxygen consumption. Therefore, RVVC isolates induced biochemical changes in the inflammatory response triggered by neutrophils, and these effects were mainly related to the detoxification of ROS/RNS through the thioredoxin reductase (TR), a key antioxidant enzyme in fungi. This might be one of the resistance mechanisms triggered by RVVC caused by C. albicans.


Asunto(s)
Candida albicans/inmunología , Proteínas Fúngicas/inmunología , Neutrófilos/inmunología , Reductasa de Tiorredoxina-Disulfuro/inmunología , Vagina/inmunología , Candida albicans/patogenicidad , Candidiasis Vulvovaginal/microbiología , Movimiento Celular , Citotoxicidad Inmunológica , Femenino , Proteínas Fúngicas/metabolismo , Humanos , Ácido Hipocloroso/metabolismo , Neutrófilos/microbiología , Cultivo Primario de Células , Recurrencia , Compuestos de Sulfhidrilo/inmunología , Compuestos de Sulfhidrilo/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Vagina/microbiología
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364941

RESUMEN

Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS: The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS: An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS: We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION: Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Leishmania , Leishmaniasis , Animales , Ratones , Ratones Endogámicos C57BL , Leishmaniasis/complicaciones , Leishmaniasis/parasitología , Leishmania/fisiología , Macrófagos , Hiperglucemia/complicaciones , Inmunidad
4.
Pharmaceutics ; 15(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631341

RESUMEN

Leishmaniasis is a disease caused by protozoa species of the Leishmania genus, and the current treatments face several difficulties and obstacles. Most anti-leishmanial drugs are administered intravenously, showing many side effects and drug resistance. The discovery of new anti-leishmanial compounds and the development of new pharmaceutical systems for more efficient and safer treatments are necessary. Copaiba oil-resin (CO) has been shown to be a promising natural compound against leishmaniasis. However, CO displays poor aqueous solubility and bioavailability. Self-emulsifying drug delivery systems (SEDDS) can provide platforms for release of hydrophobic compounds in the gastrointestinal tract, improving their aqueous solubilization, absorption and bioavailability. Therefore, the present work aimed to develop SEDDS containing CO and Soluplus® surfactant for the oral treatment of leishmaniasis. The design of the systems was accomplished using ternary phase diagrams. Emulsification and dispersion time tests were used to investigate the emulsification process in gastric and intestinal environments. The formulations were nanostructured and improved the CO solubilization. Their in vitro antiproliferative activity against promastigote forms of L. amazonensis and L. infantum, and low in vitro cytotoxicity against macrophages were also observed. More studies are necessary to determine effectiveness of SOL in these systems, which can be candidates for further pharmacokinetics and in vivo investigations.

5.
Life Sci ; 319: 121530, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863486

RESUMEN

AIMS: Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS: We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS: Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE: Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Melatonina/farmacología , Melatonina/uso terapéutico , Línea Celular Tumoral , Lactatos
6.
Front Cell Infect Microbiol ; 13: 1260448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799331

RESUMEN

Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Leishmania , Leishmaniasis , Humanos , Terpenos/farmacología , Terpenos/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Muerte Celular , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
7.
Photodiagnosis Photodyn Ther ; 40: 103103, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057363

RESUMEN

Multifunctional P123 micelle linked covalently with spermine (SM) and folic acid (FA) was developed as a drug delivery system of hypericin (HYP). The chemical structures of the modified copolymers were confirmed by spectroscopy and spectrophotometric techniques (UV-vis, FTIR, and 1H NMR). The copolymeric micelles loading HYP were prepared by solid dispersion and characterized by UV-vis, fluorescence, dynamic light scattering (DLS), ζ potential, and transmission electron microscopy (TEM). The results provided a good level of stability for HYP-loaded P123-SM, P123-FA, and P123-SM/P123-FA in the aqueous medium. The morphology analysis showed that all copolymeric micelles are spherical. Well-defined regions of different contrast allow us to infer that SM and FA were localized on the surface of micelles, and the HYP molecules are located in the core region of micelles. The uptake potential of multifunctional P123 micelle was accessed by exposing the micellar systems loading HYP to two cell lines, B16-F10 and HaCaT. HYP-loaded P123 micelles reveal a low selectivity for melanoma cells, showing significant photodamage for HaCat cells. However, the exposition of B16-F10 cells to Hyp-loaded SM- and FA-functionalized P123 micelles under light irradiation revealed the lowest CC50 values. The interpretation of these results suggested that the combination of SM and FA on P123 micelles is the main factor in enhancing the HYP uptake by melanoma cells, consequently leading to its photoinactivation.


Asunto(s)
Melanoma , Fotoquimioterapia , Humanos , Micelas , Fotoquimioterapia/métodos , Ácido Fólico/química , Poloxaleno/química , Espermina , Polímeros/química , Melanoma/tratamiento farmacológico , Portadores de Fármacos/química
8.
Chem Biol Interact ; 351: 109713, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699765

RESUMEN

Leishmaniasis is an infectious-parasitic disease caused by the protozoan Leishmania spp. The available treatments are based upon expensive drugs bearing adverse side-effects. The search for new therapeutic alternatives that present a more effective action without causing adverse effects to the patient is therefore important. The objective of this study was to evaluate the in vitro effect of botryosphaeran, a (1 â†’ 3)(1 â†’ 6)-ß-D-glucan, on the promastigote and intracellular amastigote forms of Leishmania amazonensis. The direct activity of botryosphaeran on promastigote forms was evaluated in vitro and inhibited proliferation, the IC50 7 µg/mL in 48 h was calculated. After 48 h treatment, botryosphaeran induced nitric oxide production (NO), caused mitochondrial membrane hyperpolarization, increased reactive oxygen species (ROS), and accumulation of lipid vesicles in promastigotes, resulting in apoptosis, necrosis and autophagy, and was accompanied by morphological and ultrastructural changes. The range of concentrations used did not alter the viability of peritoneal macrophages from BALB/c mice and erythrocytes of sheep. Botryosphaeran was able to reduce the number of infected macrophages and the number of amastigotes per macrophage at 12.5 µg/mL (50.75% ± 6.48), 25 µg/mL (55.66% ± 3.93) and 50 µg/mL (72.9% ± 6.98), and IC50 9.3 µg/mL (±0.66) for intracellular amastigotes forms. The leishmanicidal effect was due to activation of NF-κB and promoted an increase in pro-inflammatory cytokines (TNF-α and IL-6), iNOS and microbial-derived ROS and NO, in addition to decreasing the levels of SOD. Based upon the data obtained, we infer that botryosphaeran exerted an active leishmanicidal and immunomodulatory effect, acting on promastigotes through autophagic, apoptotic and necrosis processes, and in the intracellular amastigote form, through the action of ROS and NO.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucanos/farmacología , Factores Inmunológicos/farmacología , Leishmania/efectos de los fármacos , FN-kappa B/metabolismo , Tripanocidas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Interleucina-6/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/microbiología , Masculino , Ratones Endogámicos BALB C , Necrosis/inducido químicamente , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Pathog Dis ; 79(6)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347083

RESUMEN

Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Larval excretion/secretion (ES) of the larvae of flies of the Calliphoridae family has microbicidal activity against Gram-positive and Gram-negative bacteria, in addition to some species of Leishmania. Our study aimed at assessing the in vitro efficacy of Lucilia cuprina larval ES against the promastigote and amastigote forms of Leishmania amazonensis, elucidating possible microbicidal mechanisms and routes of death involved. Larval ES was able to inhibit the viability of L. amazonensis at all concentrations, induce morphological and ultrastructural changes in the parasite, retraction of the cell body, roughness of the cytoplasmic membrane, leakage of intracellular content, ROS production increase, induction of membrane depolarization and mitochondrial swelling, the formation of cytoplasmic lipid droplets and phosphatidylserine exposure, thus indicating the possibility of apoptosis-like death. To verify the efficacy of larval ES on amastigote forms, we performed a phagocytic assay, measurement of total ROS and NO. Treatment using larval ES reduced the percentage of infection and the number of amastigotes per macrophage of lineage J774A.1 at all concentrations, increasing the production of ROS and TNF-α, thus indicating possible pro-inflammatory immunomodulation and oxidative damage. Therefore, treatment using larval ES is effective at inducing the death of promastigotes and amastigotes of L. amazonensis even at low concentrations.


Asunto(s)
Antiprotozoarios/farmacología , Calliphoridae/química , Larva/química , Leishmania/efectos de los fármacos , Leishmaniasis/terapia , Animales , Terapia Biológica/métodos , Secreciones Corporales/química , Muerte Celular/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Leishmania/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células Vero
10.
Eur J Med Chem ; 150: 579-590, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29549842

RESUMEN

A series of novel hybrids ß-carboline-1,3,5-triazine were synthesized and evaluated for their in vitro antileishmanial activity against promastigote and amastigote forms of Leishmania amazonensis. Among the compounds tested, the hybrids 9d, 9e, 16a and 16b showed potent activity against the promastigote forms with IC50 values less than 8 µM. Compounds 9e and 16b were also active against amastigote forms, displaying IC50 values of 1.0 ±â€¯0.1 µM and 1.2 ±â€¯0.5 µM, respectively. Besides that, the hybrid 16b bearing the 4-methoxyphenyl group at C-1 of ß-carboline and isopropylamino group at 1,3,5-triazine, showed low toxicity, being 23.5 and 121.4 times more toxic for promastigotes and axenic amastigotes, respectively, than for macrophage J774-A1 cell lines. Investigation of action mechanism in promastigotes showed that compound 16b caused alterations in cell division cycle and an increase of lipid-storage bodies, leading the cells to death through various factors. The accumulation of lipid bodies may be associated with apoptotic cell death.


Asunto(s)
Antiprotozoarios/farmacología , Carbolinas/farmacología , Leishmania/efectos de los fármacos , Macrófagos/efectos de los fármacos , Triazinas/farmacología , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Carbolinas/síntesis química , Carbolinas/química , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Macrófagos/parasitología , Ratones , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA