Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2221413120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37433002

RESUMEN

Effects of micronutrients on brain connectivity are incompletely understood. Analyzing human milk samples across global populations, we identified the carbocyclic sugar myo-inositol as a component that promotes brain development. We determined that it is most abundant in human milk during early lactation when neuronal connections rapidly form in the infant brain. Myo-inositol promoted synapse abundance in human excitatory neurons as well as cultured rat neurons and acted in a dose-dependent manner. Mechanistically, myo-inositol enhanced the ability of neurons to respond to transsynaptic interactions that induce synapses. Effects of myo-inositol in the developing brain were tested in mice, and its dietary supplementation enlarged excitatory postsynaptic sites in the maturing cortex. Utilizing an organotypic slice culture system, we additionally determined that myo-inositol is bioactive in mature brain tissue, and treatment of organotypic slices with this carbocyclic sugar increased the number and size of postsynaptic specializations and excitatory synapse density. This study advances our understanding of the impact of human milk on the infant brain and identifies myo-inositol as a breast milk component that promotes the formation of neuronal connections.


Asunto(s)
Lactancia Materna , Leche Humana , Femenino , Lactante , Humanos , Animales , Ratones , Ratas , Neuronas , Inositol/farmacología , Azúcares
2.
Nat Methods ; 18(6): 688-693, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059828

RESUMEN

Understanding cellular organization demands the best possible spatial resolution in all three dimensions. In fluorescence microscopy, this is achieved by 4Pi nanoscopy methods that combine the concepts of using two opposing objectives for optimal diffraction-limited 3D resolution with switching fluorescent molecules between bright and dark states to break the diffraction limit. However, optical aberrations have limited these nanoscopes to thin samples and prevented their application in thick specimens. Here we have developed an improved iso-stimulated emission depletion nanoscope, which uses an advanced adaptive optics strategy to achieve sub-50-nm isotropic resolution of structures such as neuronal synapses and ring canals previously inaccessible in tissue. The adaptive optics scheme presented in this work is generally applicable to any microscope with a similar beam path geometry involving two opposing objectives to optimize resolution when imaging deep in aberrating specimens.


Asunto(s)
Microscopía Fluorescente/métodos , Nanotecnología/métodos , Óptica y Fotónica/métodos , Imagenología Tridimensional , Relación Señal-Ruido
3.
Brain Behav Immun ; 122: 95-109, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134183

RESUMEN

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.

4.
Cereb Cortex ; 30(1): 226-240, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31034037

RESUMEN

Brain development is likely impacted by micronutrients. This is supported by the effects of the ω-3 fatty acid docosahexaenoic acid (DHA) during early neuronal differentiation, when it increases neurite growth. Aiming to delineate DHA roles in postnatal stages, we selected the visual cortex due to its stereotypic maturation. Immunohistochemistry showed that young mice that received dietary DHA from birth exhibited more abundant presynaptic and postsynaptic specializations. DHA also increased density and size of synapses in a dose-dependent manner in cultured neurons. In addition, dendritic arbors of neurons treated with DHA were more complex. In agreement with improved connectivity, DHA enhanced physiological parameters of network maturation in vitro, including bursting strength and oscillatory behavior. Aiming to analyze functional maturation of the cortex, we performed in vivo electrophysiological recordings from awake mice to measure responses to patterned visual inputs. Dietary DHA robustly promoted the developmental increase in visual acuity, without altering light sensitivity. The visual acuity of DHA-supplemented animals continued to improve even after their cortex had matured and DHA abolished the acuity plateau. Our findings show that the ω-3 fatty acid DHA promotes synaptic connectivity and cortical processing. These results provide evidence that micronutrients can support the maturation of neuronal networks.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Corteza Visual/efectos de los fármacos , Corteza Visual/crecimiento & desarrollo , Animales , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/fisiología , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/citología , Agudeza Visual/fisiología
5.
PLoS Genet ; 13(1): e1006579, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114319

RESUMEN

Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Insulina/metabolismo , Neurogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratas
6.
Neural Plast ; 2019: 1538137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565044

RESUMEN

Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.


Asunto(s)
Período Crítico Psicológico , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Proteínas de la Membrana/metabolismo
7.
J Neurosci ; 36(28): 7464-75, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413156

RESUMEN

UNLABELLED: Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. SIGNIFICANCE STATEMENT: This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.


Asunto(s)
Región CA3 Hipocampal/citología , Moléculas de Adhesión Celular/metabolismo , Regulación de la Expresión Génica/genética , Inmunoglobulinas/metabolismo , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Animales , Región CA3 Hipocampal/diagnóstico por imagen , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Condicionamiento Clásico/efectos de los fármacos , Miedo/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulinas/genética , Técnicas In Vitro , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/efectos de los fármacos , Parvalbúminas/metabolismo , Piridazinas/farmacología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Factores de Tiempo
8.
J Neurosci ; 34(23): 7999-8009, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899721

RESUMEN

Dendritic arbors are complex neuronal structures that receive and process synaptic inputs. One mechanism regulating dendrite differentiation is Semaphorin/Plexin signaling, specifically through binding of soluble Sema3A to Neuropilin/PlexinA coreceptors. Here we show that the protein Farp1 [FERM, RhoGEF (ARHGEF), and pleckstrin domain protein 1], a Rac1 activator previously identified as a synaptogenic signaling protein, contributes to establishing dendrite tip number and total dendritic branch length in maturing rat neurons and is sufficient to promote dendrite complexity. Aiming to define its upstream partners, our results support that Farp1 interacts with the Neuropilin-1/PlexinA1 complex and colocalizes with PlexinA1 along dendritic shafts. Functionally, Farp1 is required by Sema3A to promote dendritic arborization of hippocampal neurons, and Sema3A regulates dendritic F-actin distribution via Farp1. Unexpectedly, Sema3A also requires neuronal activity to promote dendritic complexity, presumably because silencing neurons leads to a proteasome-dependent reduction of PlexinA1 in dendrites. These results provide new insights into how activity and soluble cues cooperate to refine dendritic morphology through intracellular signaling pathways.


Asunto(s)
Dendritas/fisiología , Neuronas/citología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Semaforina-3A/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Dendritas/efectos de los fármacos , Antagonistas del GABA/farmacología , Hipocampo/citología , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neuronas/efectos de los fármacos , Picrotoxina/farmacología , Ratas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Semaforina-3A/genética , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Transfección
9.
EMBO J ; 30(23): 4728-38, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926970

RESUMEN

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.


Asunto(s)
Moléculas de Adhesión Celular , Inmunoglobulinas , Neuritas/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Sinapsis/metabolismo , Animales , Células COS , Adhesión Celular/fisiología , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultivo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/citología , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Ratones
10.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39158698

RESUMEN

Junctions between the ER and plasma membrane (PM) are implicated in calcium homeostasis, non-vesicular lipid transfer, and other cellular functions. Two ER proteins that function both as tethers to the PM via a polybasic C-terminus motif and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. We report that both proteins also form a complex with band 4.1 family members, which in turn bind PM proteins including cell adhesion molecules such as SynCAM 1. This complex enriches TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM junctions are impacted when band 4.1 is part of the junction, as TMEM24 at cell-adjacent ER/PM junctions is not shed from the PM by calcium rise, unlike TMEM24 at non-cell adjacent junctions. Lipid transport between the ER and the PM by TMEM24 and C2CD2 at sites where cells, including neurons, contact other cells may participate in adaptive responses to cell contact-dependent signaling.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Membrana Celular/metabolismo , Comunicación Celular , Células HEK293 , Unión Proteica , Transporte Biológico , Calcio/metabolismo , Ratones , Metabolismo de los Lípidos
11.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405887

RESUMEN

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early life adversity, with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of early life adversity, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21, in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. This finding suggests a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, these studies highlight a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of early-life adversity.

12.
N Engl J Med ; 362(20): 1901-8, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20445167

RESUMEN

Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedigree leading to the identification of a rare functional mutation in the HDC gene encoding L-histidine decarboxylase, the rate-limiting enzyme in histamine biosynthesis. Our findings, together with previously published data from model systems, point to a role for histaminergic neurotransmission in the mechanism and modulation of Tourette's syndrome and tics.


Asunto(s)
Codón sin Sentido , Histidina Descarboxilasa/genética , Síndrome de Tourette/genética , Mapeo Cromosómico , Femenino , Genes Dominantes , Ligamiento Genético , Predisposición Genética a la Enfermedad , Haplotipos , Histidina Descarboxilasa/metabolismo , Humanos , Masculino , Repeticiones de Microsatélite , Linaje , Reacción en Cadena de la Polimerasa
13.
Proc Natl Acad Sci U S A ; 107(16): 7568-73, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368431

RESUMEN

Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/fisiología , Dendritas/metabolismo , Conos de Crecimiento/metabolismo , Inmunoglobulinas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Movimiento Celular , Concentración de Iones de Hidrógeno , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal/métodos , Modelos Biológicos , Neuronas/metabolismo , Unión Proteica , Ratas , Proteínas Supresoras de Tumor/genética
14.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106008

RESUMEN

Junctions between the ER and the plasma membrane (ER/PM junctions) are implicated in calcium homeostasis, non-vesicular lipid transfer and other cellular functions. Two ER proteins that function both as membrane tethers to the PM via a polybasic motif in their C-terminus and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. Based on an unbiased proximity ligation analysis, we found that both proteins can also form a complex with band 4.1 family members, which in turn can bind a variety of plasma membrane proteins including cell adhesion molecules such as SynCAM 1. This complex results in the enrichment of TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM contacts are impacted when in complex as TMEM24 present at cell adjacent junctions is not shed by calcium rise, unlike TMEM24 at non-cell adjacent junctions. These findings suggest that cell-contact interactions control ER/PM junctions via TMEM24 complexes involving band 4.1 proteins.

15.
Nat Commun ; 14(1): 459, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709330

RESUMEN

Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.


Asunto(s)
Molécula 1 de Adhesión Celular , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Sinapsis , Animales , Ratones , Cognición , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo
16.
Transl Psychiatry ; 13(1): 167, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173343

RESUMEN

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Relacionados con Sustancias , Humanos , Animales , Ratones , Fenotipo , Conducta Impulsiva , Personalidad/genética , Polimorfismo de Nucleótido Simple , Moléculas de Adhesión Celular/genética
17.
Nat Commun ; 13(1): 3102, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35660742

RESUMEN

Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named "dopamine hub synapses". At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity.


Asunto(s)
Dopamina , Sinapsis , Animales , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Ratones , Recompensa , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
18.
J Biol Chem ; 285(45): 34864-74, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20739279

RESUMEN

Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Ácido N-Acetilneuramínico/química , Terminales Presinápticos/química , Animales , Células COS , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Chlorocebus aethiops , Cristalografía por Rayos X , Glicosilación , Humanos , Espectrometría de Masas , Mutación , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Terminales Presinápticos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína
19.
Am J Hum Genet ; 82(1): 165-73, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18179895

RESUMEN

Autism spectrum disorders (ASD) are a group of related neurodevelopmental syndromes with complex genetic etiology. We identified a de novo chromosome 7q inversion disrupting Autism susceptibility candidate 2 (AUTS2) and Contactin Associated Protein-Like 2 (CNTNAP2) in a child with cognitive and social delay. We focused our initial analysis on CNTNAP2 based on our demonstration of disruption of Contactin 4 (CNTN4) in a patient with ASD; the recent finding of rare homozygous mutations in CNTNAP2 leading to intractable seizures and autism; and in situ and biochemical analyses reported herein that confirm expression in relevant brain regions and demonstrate the presence of CNTNAP2 in the synaptic plasma membrane fraction of rat forebrain lysates. We comprehensively resequenced CNTNAP2 in 635 patients and 942 controls. Among patients, we identified a total of 27 nonsynonymous changes; 13 were rare and unique to patients and 8 of these were predicted to be deleterious by bioinformatic approaches and/or altered residues conserved across all species. One variant at a highly conserved position, I869T, was inherited by four affected children in three unrelated families, but was not found in 4010 control chromosomes (p = 0.014). Overall, this resequencing data demonstrated a modest nonsignificant increase in the burden of rare variants in cases versus controls. Nonetheless, when viewed in light of two independent studies published in this issue of AJHG showing a relationship between ASD and common CNTNAP2 alleles, the cytogenetic and mutation screening data suggest that rare variants may also contribute to the pathophysiology of ASD, but place limits on the magnitude of this contribution.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Niño , Femenino , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero , Ratas , Lóbulo Temporal/metabolismo
20.
Curr Top Dev Biol ; 142: 319-370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706921

RESUMEN

Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.


Asunto(s)
Encéfalo/fisiología , Sinapsis , Humanos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA