Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Neurosci ; 53(7): 2192-2204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32306446

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADDs) are widely used in rodents to manipulate neuronal activity and establish causal links between structure and function. Their utilization in non-human primates (NHPs) is, however, limited and their efficacy still debated. Here, we recorded and examined the neuronal activity in the hM4Di DREADD-transduced and hM4Di DREADD-free GPe of two anesthetized animals following local intra-GPe microinjection of clozapine-N-oxide (CNO). Our results revealed that the neuronal activity of the well-isolated units recorded in the hM4Di DREADD-transduced GPe exhibited diverse patterns in timing and polarity (increase/decrease) of firing rate modulations following CNO injection. Nevertheless, significant decreases in activity were more frequent (and more pronounced) than significant increases in activity during CNO injection (6/18 vs. 3/18 units) and were exclusive after CNO Injection (8/18 units). In contrast, only one of the 8 well-isolated units recorded in hM4Di DREADD-free GPe exhibited a significant increase in activity after CNO injection. Overall, the number of units exhibiting a significant period-related decrease following CNO injection was significantly larger in hM4Di DREADD-transduced GPe than in the hM4Di DREADD-free GPe (8/18 [44.4%] vs. 0/8 [0%]). Moreover, postmortem histochemical analysis revealed that hM4Di DREADDs were expressed at high level in the GPe neurons located in the vicinity of the viral vector injection sites. Our results therefore show in vivo hM4Di DREADD-based inhibition of pallidal neurons in the NHP model and reinforce the view that DREADD technology can be effective in NHPs.


Asunto(s)
Clozapina , Neuronas , Animales , Fenómenos Electrofisiológicos , Globo Pálido , Primates
2.
Cereb Cortex ; 30(12): 6469-6480, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32776091

RESUMEN

OBJECTIVE: Whether the basal ganglia are involved in the cortical synchronization during focal seizures is still an open question. In the present study, we proposed to synchronize cortico-striatal activities acutely inducing striatal disinhibition, performing GABA-antagonist injections within the putamen in primates. METHOD: Experiments were performed on three fascicularis monkeys. During each experimental session, low volumes of bicuculline (0.5-4 µL) were injected at a slow rate of 1 µL/min. Spontaneous behavioral changes were classified according to Racine's scale modified for primates. These induced motor behaviors were correlated with electromyographic, electroencephalographic, and putaminal and pallidal local field potentials changes in activity. RESULTS: acute striatal desinhibition induced focal motor seizures. Seizures were closely linked to cortical epileptic activity synchronized with a striatal paroxysmal activity. These changes in striatal activity preceded the cortical epileptic activity and the induced myoclonia, and both cortical and subcortical activities were coherently synchronized during generalized seizures. INTERPRETATION: Our results strongly suggest the role of the sensorimotor striatum in the regulation and synchronization of cortical excitability. These dramatic changes in the activity of this "gating" pathway might influence seizure susceptibility by modulating the threshold for the initiation of focal motor seizures.


Asunto(s)
Corteza Cerebral/fisiopatología , Sincronización Cortical , Putamen/fisiopatología , Convulsiones/fisiopatología , Animales , Bicuculina/administración & dosificación , Femenino , Antagonistas de Receptores de GABA-A/administración & dosificación , Macaca fascicularis , Masculino , Vías Nerviosas/fisiopatología , Putamen/efectos de los fármacos , Ratas Sprague-Dawley , Convulsiones/etiología
3.
Front Bioeng Biotechnol ; 9: 762209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869273

RESUMEN

Adeno-associated virus (AAV) vectors are increasingly used as an effective and safe approach to deliver genetic material to the central nervous system (CNS). The AAV9-derived variants, AAV-PHP. B and AAV-PHP.eB, reportedly broadly transduce cells throughout the CNS compared to the original serotype 9, AAV9. As non-human primate data are scarce, we here evaluated the CNS transduction efficiencies after lumbar intrathecal bolus delivery of identical doses of either AAV-PHP. B:CAG-EGFP or AAV-PHP. eB:CAG-EGFP in rhesus macaque monkeys. AAV-PHP.eB achieved a more efficient and widespread CNS transduction compared to AAV-PHP.B. We report a strong neuronal and oligodendroglial tropism for both variants in the putamen and in the hippocampus. This proof-of-concept experiment highlights the potential value of intrathecal infusions of AAV-PHP.eB to distribute genetic material in the CNS with cell-type specificity and introduces a new opportunity to model brain diseases in rhesus macaque monkeys and further develop gene therapies targeting the CNS in humans.

4.
PLoS One ; 15(12): e0243767, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382724

RESUMEN

Hippocampal-cortical dialogue, during which hippocampal ripple oscillations support information transfer, is necessary for long-term consolidation of spatial memories. Whereas a vast amount of work has been carried out to understand the cellular and molecular mechanisms involved in the impairments of memory formation in Alzheimer's disease (AD), far less work has been accomplished to understand these memory deficiencies at the network-level interaction that may underlie memory processing. We recently demonstrated that freely moving 8 to 9-month-old APP/PS1 mice, a model of AD, are able to learn a spatial reference memory task despite a major deficit in Sharp-Wave Ripples (SWRs), the integrity of which is considered to be crucial for spatial memory formation. In order to test whether reconfiguration of hippocampal-cortical dialogue could be responsible for the maintenance of this ability for memory formation, we undertook a study to identify causal relations between hippocampal and cortical circuits in epochs when SWRs are generated in hippocampus. We analyzed the data set obtained from multielectrode intracranial recording of transgenic and wild-type mice undergoing consolidation of spatial memory reported in our previous study. We applied Directed Transfer Function, a connectivity measure based on Granger causality, in order to determine effective coupling between distributed circuits which express oscillatory activity in multiple frequency bands. Our results showed that hippocampal-cortical coupling in epochs containing SWRs was expressed in the two frequency ranges corresponding to ripple (130-180 Hz) and slow gamma (20-60 Hz) band. The general features of connectivity patterns were similar in the 8 to 9-month-old APP/PS1 and wild-type animals except that the coupling in the slow gamma range was stronger and spread to more cortical sites in APP/PS1 mice than in the wild-type group. During the occurrence of SWRs, the strength of effective coupling from the cortex to hippocampus (CA1) in the ripple band undergoes sharp increase, involving cortical areas that were different in the two groups of animals. In the wild-type group, retrosplenial cortex and posterior cingulate cortex interacted with the hippocampus most strongly, whereas in the APP/PS1 group more anterior structures interacted with the hippocampus, that is, anterior cingulate cortex and prefrontal cortex. This reconfiguration of cortical-hippocampal interaction pattern may be an adaptive mechanism responsible for supporting spatial memory consolidation in AD mice model.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Corteza Cerebral/fisiología , Electroencefalografía , Hipocampo/fisiología , Neocórtex/fisiología , Memoria Espacial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
5.
Sci Rep ; 9(1): 3989, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850702

RESUMEN

Identification of endogenous pathological amyloid ß peptides (Aß) forms in the brains of patients with Alzheimer's disease (AD) is still unclear. In healthy brain, Aß can associate with Apolipoprotein E (ApoE) which is involved in its metabolism and clearance. In the brain of patients with AD, ApoE is cleaved and produces ApoE fragments. We studied the forms of Aß and their interaction with the ApoE fragments in post-mortem brains from control and AD patients by western blots and co-immunoprecipitation. Three Aß-containing peptides and three ApoE fragments were specifically found in the brain of AD patients. Co-immunoprecipitations showed that ApoE fragments and Aß1-42 peptides are co-partners in heteromers of 18 and 16 kDa while ApoE-fragments and Aß peptides of 12 kDa did not interact with each other. Formation of the 18 kDa ApoE-fragment/Aß heteromers is specifically increased in ApoE4 carriers and is a strong brain marker of AD while 16 kDa ApoE-fragment/Aß and Aß 12 kDa correlate to memory deficit. These data show that in patients with AD, ApoE fragmentation generates peptides that trap Aß in the brain. Inhibiting the fragmentation or targeting ApoE fragments could be exploited to define strategies to detect or reverse AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Apolipoproteína E4/metabolismo , Humanos , Masculino , Ratones
6.
Neurobiol Aging ; 58: 201-212, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753475

RESUMEN

Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.


Asunto(s)
Calcio/metabolismo , Arterias Cerebrales/metabolismo , Contracción Muscular/genética , Mutación , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Animales , Cafeína/farmacología , Señalización del Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Arterias Cerebrales/fisiología , Expresión Génica/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA