Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 21(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898484

RESUMEN

BACKGROUND: The clinical success of immune checkpoint inhibitors demonstrates that reactivation of the human immune system delivers durable responses for some patients and represents an exciting approach for cancer treatment. An important class of preclinical in vivo models for immuno-oncology is immunocompetent mice bearing mouse syngeneic tumors. To facilitate translation of preclinical studies into human, we characterized the genomic, transcriptomic, and protein expression of a panel of ten commonly used mouse tumor cell lines grown in vitro culture as well as in vivo tumors. RESULTS: Our studies identified a number of genetic and cellular phenotypic differences that distinguish commonly used mouse syngeneic models in our study from human cancers. Only a fraction of the somatic single nucleotide variants (SNVs) in these common mouse cell lines directly match SNVs in human actionable cancer genes. Some models derived from epithelial tumors have a more mesenchymal phenotype with relatively low T-lymphocyte infiltration compared to the corresponding human cancers. CT26, a colon tumor model, had the highest immunogenicity and was the model most responsive to CTLA4 inhibitor treatment, by contrast to the relatively low immunogenicity and response rate to checkpoint inhibitor therapies in human colon cancers. CONCLUSIONS: The relative immunogenicity of these ten syngeneic tumors does not resemble typical human tumors derived from the same tissue of origin. By characterizing the mouse syngeneic models and comparing with their human tumor counterparts, this study contributes to a framework that may help investigators select the model most relevant to study a particular immune-oncology mechanism, and may rationalize some of the challenges associated with translating preclinical findings to clinical studies.


Asunto(s)
Antígeno CTLA-4/genética , Neoplasias del Colon/inmunología , Genómica , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Linfocitos T/inmunología
2.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520734

RESUMEN

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Femenino , Humanos , Masculino , Neoplasias/inmunología
3.
Genomics ; 94(6): 423-32, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19699293

RESUMEN

Biomarker development for prediction of patient response to therapy is one of the goals of molecular profiling of human tissues. Due to the large number of transcripts, relatively limited number of samples, and high variability of data, identification of predictive biomarkers is a challenge for data analysis. Furthermore, many genes may be responsible for drug response differences, but often only a few are sufficient for accurate prediction. Here we present an analysis approach, the Convergent Random Forest (CRF) method, for the identification of highly predictive biomarkers. The aim is to select from genome-wide expression data a small number of non-redundant biomarkers that could be developed into a simple and robust diagnostic tool. Our method combines the Random Forest classifier and gene expression clustering to rank and select a small number of predictive genes. We evaluated the CRF approach by analyzing four different data sets. The first set contains transcript profiles of whole blood from rheumatoid arthritis patients, collected before anti-TNF treatment, and their subsequent response to the therapy. In this set, CRF identified 8 transcripts predicting response to therapy with 89% accuracy. We also applied the CRF to the analysis of three previously published expression data sets. For all sets, we have compared the CRF and recursive support vector machines (RSVM) approaches to feature selection and classification. In all cases the CRF selects much smaller number of features, five to eight genes, while achieving similar or better performance on both training and independent testing sets of data. For both methods performance estimates using cross-validation is similar to performance on independent samples. The method has been implemented in R and is available from the authors upon request: Jadwiga.Bienkowska@biogenidec.com.


Asunto(s)
Algoritmos , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Biomarcadores/sangre , Árboles de Decisión , Monitoreo de Drogas/métodos , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adenocarcinoma/genética , Antirreumáticos/uso terapéutico , Artritis Reumatoide/sangre , Neoplasias de la Mama/patología , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Neoplasias de la Próstata/genética , Transcripción Genética , Resultado del Tratamiento
4.
PLoS One ; 15(8): e0232994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32866155

RESUMEN

Transposable elements (TEs) are mobile genetic elements in eukaryotic genomes. Recent research highlights the important role of TEs in the embryogenesis, neurodevelopment, and immune functions. However, there is a lack of a one-stop and easy to use computational pipeline for expression analysis of both genes and locus-specific TEs from RNA-Seq data. Here, we present GeneTEFlow, a fully automated, reproducible and platform-independent workflow, for the comprehensive analysis of gene and locus-specific TEs expression from RNA-Seq data employing Nextflow and Docker technologies. This application will help researchers more easily perform integrated analysis of both gene and TEs expression, leading to a better understanding of roles of gene and TEs regulation in human diseases. GeneTEFlow is freely available at https://github.com/zhongw2/GeneTEFlow.


Asunto(s)
Elementos Transponibles de ADN , RNA-Seq/estadística & datos numéricos , Programas Informáticos , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Genoma Humano , Humanos , Flujo de Trabajo
5.
Pac Symp Biocomput ; : 127-38, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15759620

RESUMEN

The Gene Ontology (GO) offers a comprehensive and standardized way to describe a protein's biological role. Proteins are annotated with GO terms based on direct or indirect experimental evidence. Term assignments are also inferred from homology and literature mining. Regardless of the type of evidence used, GO assignments are manually curated or electronic. Unfortunately, manual curation cannot keep pace with the data, available from publications and various large experimental datasets. Automated literature-based annotation methods have been developed in order to speed up the annotation. However, they only apply to proteins that have been experimentally investigated or have close homologs with sufficient and consistent annotation. One of the homology-based electronic methods for GO annotation is provided by the InterPro database. The InterPro2GO/PFAM2GO associates individual protein domains with GO terms and thus can be used to annotate the less studied proteins. However, protein classification via a single functional domain demands stringency to avoid large number of false positives. This work broadens the basic approach. We model proteins via their entire functional domain content and train individual decision tree classifiers for each GO term using known protein assignments. We demonstrate that our approach is sensitive, specific and precise, as well as fairly robust to sparse data. We have found that our method is more sensitive when compared to the InterPro2GO performance and suffers only some precision decrease. In comparison to the InterPro2GO we have improved the sensitivity by 22%, 27% and 50% for Molecular Function, Biological Process and Cellular GO terms respectively.


Asunto(s)
Modelos Genéticos , Proteínas/química , Algoritmos , Animales , Bases de Datos de Proteínas , Árboles de Decisión , Proteínas/genética , Reproducibilidad de los Resultados
6.
Brief Bioinform ; 3(1): 45-58, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12002223

RESUMEN

The wealth of protein sequence and structure data is greater than ever, thanks to the ongoing Genomics and Structural Genomics projects. The information available through such efforts needs to be analysed by new methods that combine both databases. One important result of genomic sequence analysis is the inference of functional homology among proteins. Until recently sequence similarity comparison was the only method for homologue inference. The new fold recognition approach reviewed in this paper enhances sequence comparison methods by including structural information in the process of protein comparison. This additional information often allows for the detection of similarities that cannot be found by methods that only use sequence information.


Asunto(s)
Pliegue de Proteína , Proteínas/química , Secuencia de Aminoácidos , Teorema de Bayes , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
7.
Protein Eng ; 16(12): 897-904, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14983069

RESUMEN

The question of protein homology versus analogy arises when proteins share a common function or a common structural fold without any statistically significant amino acid sequence similarity. Even though two or more proteins do not have similar sequences but share a common fold and the same or closely related function, they are assumed to be homologs, descendant from a common ancestor. The problem of homolog identification is compounded in the case of proteins of 100 or less amino acids. This is due to a limited number of basic single domain folds and to a likelihood of identifying by chance sequence similarity. The latter arises from two conditions: first, any search of the currently very large protein database is likely to identify short regions of chance match; secondly, a direct sequence comparison among a small set of short proteins sharing a similar fold can detect many similar patterns of hydrophobicity even if proteins do not descend from a common ancestor. In an effort to identify distant homologs of the many ubiquitin proteins, we have developed a combined structure and sequence similarity approach that attempts to overcome the above limitations of homolog identification. This approach results in the identification of 90 probable ubiquitin-related proteins, including examples from the two prokaryotic domains of life, Archaea and Bacteria.


Asunto(s)
Familia de Multigenes , Células Procariotas/metabolismo , Ubiquitina/genética , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA