Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682303

RESUMEN

This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fenotipo , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Telencéfalo/metabolismo , Telencéfalo/embriología , Análisis de la Célula Individual , Transducción de Señal , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciación Celular
2.
Development ; 150(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260360

RESUMEN

Across developmental systems, quantitative and imaging-based approaches have provided unprecedented resolution of dynamic changes in gene regulation and cell fate specification, along with complex changes in tissue morphology. This has set the stage for a wealth of comprehensive theoretical models, parameterised by experimental data, able to reproduce key aspects of biological behaviour and jointly enabling a higher level of abstraction, going from the identification of the molecular components to understanding complex functional relationships between these components. Despite these successes, gaining a cross-scale understanding of developmental systems will require further collaboration between disciplines, from developmental biology to bioengineering, systems biology and biophysics. We highlight the exciting multi-disciplinary research discussed at The Company of Biologists workshop 'Fostering quantitative modelling and experimentation in Developmental Biology'.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Biofisica , Biología de Sistemas , Bioingeniería
3.
EMBO J ; 39(12): e103558, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32395844

RESUMEN

Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.


Asunto(s)
Animales Modificados Genéticamente/embriología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos , MicroARNs/metabolismo , Neurogénesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína 3 Similar a ELAV/genética , Proteína 3 Similar a ELAV/metabolismo , MicroARNs/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Mol Syst Biol ; 17(5): e9902, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34031978

RESUMEN

Ultradian oscillations of HES Transcription Factors (TFs) at the single-cell level enable cell state transitions. However, the tissue-level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4-6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra-ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single-cell dynamics.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Comunicación Celular , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Neurogénesis , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Análisis Espacio-Temporal , Médula Espinal/metabolismo , Ritmo Ultradiano
5.
J R Soc Interface ; 19(193): 20220339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36000231

RESUMEN

Hes genes are transcriptional repressors activated by Notch. In the developing mouse neural tissue, HES5 expression oscillates in neural progenitors (Manning et al. 2019 Nat. Commun. 10, 1-19 (doi:10.1038/s41467-019-10734-8)) and is spatially organized in small clusters of cells with synchronized expression (microclusters). Furthermore, these microclusters are arranged with a spatial periodicity of three-four cells in the dorso-ventral axis and show regular switching between HES5 high/low expression on a longer time scale and larger amplitude than individual temporal oscillators (Biga et al. 2021 Mol. Syst. Biol. 17, e9902 (doi:10.15252/msb.20209902)). However, our initial computational modelling of coupled HES5 could not explain these features of the experimental data. In this study, we provide theoretical results that address these issues with biologically pertinent additions. Here, we report that extending Notch signalling to non-neighbouring progenitor cells is sufficient to generate spatial periodicity of the correct size. In addition, introducing a regular perturbation of Notch signalling by the emerging differentiating cells induces a temporal switching in the spatial pattern, which is longer than an individual cell's periodicity. Thus, with these two new mechanisms, a computational model delivers outputs that closely resemble the complex tissue-level HES5 dynamics. Finally, we predict that such dynamic patterning spreads out differentiation events in space, complementing our previous findings whereby the local synchronization controls the rate of differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Represoras , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Comunicación Celular , Diferenciación Celular , Ratones , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología
6.
iScience ; 24(10): 103198, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34703994

RESUMEN

Quiescence is a dynamic process of reversible cell cycle arrest. High-level persistent expression of the HES1 transcriptional repressor, which oscillates with an ultradian periodicity in proliferative neural stem cells (NSCs), is thought to mediate quiescence. However, it is not known whether this is due to a change in levels or dynamics. Here, we induce quiescence in embryonic NSCs with BMP4, which does not increase HES1 level, and we find that HES1 continues to oscillate. To assess the role of HES1 dynamics, we express persistent HES1 under a moderate strength promoter, which overrides the endogenous oscillations while maintaining the total HES1 level within physiological range. We find that persistent HES1 does not affect proliferation or entry into quiescence; however, exit from quiescence is impeded. Thus, oscillatory expression of HES1 is specifically required for NSCs to exit quiescence, a finding of potential importance for controlling reactivation of stem cells in tissue regeneration and cancer.

7.
Nat Commun ; 10(1): 2835, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249377

RESUMEN

During embryogenesis cells make fate decisions within complex tissue environments. The levels and dynamics of transcription factor expression regulate these decisions. Here, we use single cell live imaging of an endogenous HES5 reporter and absolute protein quantification to gain a dynamic view of neurogenesis in the embryonic mammalian spinal cord. We report that dividing neural progenitors show both aperiodic and periodic HES5 protein fluctuations. Mathematical modelling suggests that in progenitor cells the HES5 oscillator operates close to its bifurcation boundary where stochastic conversions between dynamics are possible. HES5 expression becomes more frequently periodic as cells transition to differentiation which, coupled with an overall decline in HES5 expression, creates a transient period of oscillations with higher fold expression change. This increases the decoding capacity of HES5 oscillations and correlates with interneuron versus motor neuron cell fate. Thus, HES5 undergoes complex changes in gene expression dynamics as cells differentiate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones/embriología , Ratones/metabolismo , Ratones Endogámicos ICR , Ratones Noqueados , Células-Madre Neurales/química , Células-Madre Neurales/citología , Proteínas Represoras/química , Proteínas Represoras/genética , Análisis de la Célula Individual
8.
Stem Cell Reports ; 10(6): 1895-1907, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29779895

RESUMEN

Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state.


Asunto(s)
Autorrenovación de las Células , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Biomarcadores , Diferenciación Celular/genética , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Inmunofenotipificación , Análisis de la Célula Individual/métodos
9.
Elife ; 52016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27700985

RESUMEN

Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , MicroARNs/metabolismo , Neuronas/fisiología , Células Madre/fisiología , Factor de Transcripción HES-1/metabolismo , Simulación por Computador , Humanos
10.
Stem Cell Reports ; 3(1): 142-55, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25068128

RESUMEN

Using time-lapse imaging, we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating, and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore, the daughter cells showed a continued pattern of cell death after division, so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact, which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast, most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny, without the need for cell:cell contacts and independent of their motility patterns.


Asunto(s)
Células Madre Embrionarias/citología , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/fisiología , Humanos , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA