Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 578(7794): 306-310, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31969702

RESUMEN

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi1-5. Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice6, the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions7-9 and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported10,11, suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment10-13. Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-07514. Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Dominios Proteicos/efectos de los fármacos , Piridinas/farmacología , Pirroles/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Piridinas/efectos adversos , Piridinas/toxicidad , Pirroles/efectos adversos , Pirroles/toxicidad , Ratas , Receptores Androgénicos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Microbiol ; 111(3): 637-661, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536925

RESUMEN

Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight-stranded ß-barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O-polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division.


Asunto(s)
Brucella abortus/crecimiento & desarrollo , Brucella abortus/patogenicidad , Ciclo Celular , Pared Celular/metabolismo , Antígenos O/metabolismo , Proteínas Periplasmáticas/metabolismo , Factores de Virulencia/metabolismo , Animales , Brucella abortus/enzimología , Brucella abortus/genética , Brucella ovis/genética , Brucella ovis/crecimiento & desarrollo , Brucelosis/microbiología , Brucelosis/patología , Modelos Animales de Enfermedad , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Genes Bacterianos , Genes Esenciales , Histocitoquímica , Macrófagos/microbiología , Ratones Endogámicos BALB C , Viabilidad Microbiana , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Conformación Proteica , Pliegue de Proteína , Bazo/patología , Factores de Virulencia/química , Factores de Virulencia/genética
3.
J Bacteriol ; 201(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30936371

RESUMEN

The Gram-negative cell envelope is a remarkable structure with core components that include an inner membrane, an outer membrane, and a peptidoglycan layer in the periplasmic space between. Multiple molecular systems function to maintain integrity of this essential barrier between the interior of the cell and its surrounding environment. We show that a conserved DUF1849 family protein, EipB, is secreted to the periplasmic space of Brucella species, a monophyletic group of intracellular pathogens. In the periplasm, EipB folds into an unusual 14-stranded ß-spiral structure that resembles the LolA and LolB lipoprotein delivery system, though the overall fold of EipB is distinct from LolA/LolB. Deletion of eipB results in defects in Brucella cell envelope integrity in vitro and in maintenance of spleen colonization in a mouse model of Brucella abortus infection. Transposon disruption of ttpA, which encodes a periplasmic protein containing tetratricopeptide repeats, is synthetically lethal with eipB deletion. ttpA is a reported virulence determinant in Brucella, and our studies of ttpA deletion and overexpression strains provide evidence that this gene also contributes to cell envelope function. We conclude that eipB and ttpA function in the Brucella periplasmic space to maintain cell envelope integrity, which facilitates survival in a mammalian host.IMPORTANCEBrucella species cause brucellosis, a global zoonosis. A gene encoding a conserved DUF1849-family protein, which we have named EipB, is present in all sequenced Brucella and several other genera in the class Alphaproteobacteria The manuscript provides the first functional and structural characterization of a DUF1849 protein. We show that EipB is secreted to the periplasm where it forms a spiral-shaped antiparallel ß protein that is a determinant of cell envelope integrity in vitro and virulence in an animal model of disease. eipB genetically interacts with ttpA, which also encodes a periplasmic protein. We propose that EipB and TtpA function as part of a system required for cell envelope homeostasis in select Alphaproteobacteria.


Asunto(s)
Membrana Externa Bacteriana/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Brucella abortus/genética , Brucella abortus/patogenicidad , Periplasma/química , Animales , Brucella abortus/química , Brucelosis/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Virulencia , Factores de Virulencia/genética
4.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135237

RESUMEN

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Asunto(s)
Antineoplásicos/farmacología , Indanos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indanos/química , Modelos Moleculares , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Células Tumorales Cultivadas
5.
Biochemistry ; 57(23): 3278-3288, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29533601

RESUMEN

C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-ß-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-ß-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-ß-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.


Asunto(s)
Antibióticos Antineoplásicos , Proteínas Bacterianas , Enediinos , Genes Bacterianos , Péptido Sintasas , Streptomyces , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Enediinos/química , Enediinos/metabolismo , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Streptomyces/enzimología , Streptomyces/genética
6.
Proc Natl Acad Sci U S A ; 112(41): 12693-8, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26420866

RESUMEN

Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


Asunto(s)
Evolución Molecular , Sintasas Poliquetidas/química , Cristalografía por Rayos X , Sintasas Poliquetidas/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato
7.
J Biol Chem ; 291(25): 13243-56, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129205

RESUMEN

Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Å resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. The current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.


Asunto(s)
Acinetobacter , Proteínas Bacterianas/química , Ácidos Cumáricos/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , ADN Bacteriano/química , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
Biochemistry ; 55(36): 5142-54, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27560143

RESUMEN

C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-ß-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-ß-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar ß-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.


Asunto(s)
Aminoglicósidos/biosíntesis , Antibacterianos/biosíntesis , Sarcoglicanos/química , Streptomyces/metabolismo , Catálisis , Cristalografía por Rayos X , Enediinos , Humanos , Hidroxilación
9.
J Biol Chem ; 290(43): 26249-58, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26240141

RESUMEN

Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.


Asunto(s)
Glucosa 1-Deshidrogenasa/química , Pentosas/biosíntesis , Secuencia de Aminoácidos , Secuencia de Carbohidratos , Cristalografía por Rayos X , Glucosa 1-Deshidrogenasa/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Pentosas/química , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Biochemistry ; 54(45): 6842-51, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26512730

RESUMEN

The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 Å, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein-ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.


Asunto(s)
Antibióticos Antineoplásicos/química , Proteínas Bacterianas/química , Proteínas Portadoras/química , Farmacorresistencia Microbiana/fisiología , Streptomyces/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Conformación de Carbohidratos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Glicopéptidos/metabolismo , Glicopéptidos/farmacología , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Streptomyces/genética , Relación Estructura-Actividad
11.
Proteins ; 83(8): 1547-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26061967

RESUMEN

AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose-containing disaccharide moiety. The corresponding sugar nucleotide-based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X-ray structure at 1.50-Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT-I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carbazoles/metabolismo , Transaminasas/química , Transaminasas/metabolismo , Actinomycetales/enzimología , Actinomycetales/genética , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transaminasas/genética
12.
Proteins ; 82(7): 1210-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25050442

RESUMEN

Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Modelos Moleculares , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Biología Computacional , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Alineación de Secuencia
14.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 997-1009, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916224

RESUMEN

Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.


Asunto(s)
Microfluídica , Proteínas , Cristalización , Cristalografía por Rayos X , Recolección de Datos , Emulsiones , Humanos
15.
Nat Cancer ; 3(3): 337-354, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35256819

RESUMEN

Costimulatory receptors such as glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) play key roles in regulating the effector functions of T cells. In human clinical trials, however, GITR agonist antibodies have shown limited therapeutic effect, which may be due to suboptimal receptor clustering-mediated signaling. To overcome this potential limitation, a rational protein engineering approach is needed to optimize GITR agonist-based immunotherapies. Here we show a bispecific molecule consisting of an anti-PD-1 antibody fused with a multimeric GITR ligand (GITR-L) that induces PD-1-dependent and FcγR-independent GITR clustering, resulting in enhanced activation, proliferation and memory differentiation of primed antigen-specific GITR+PD-1+ T cells. The anti-PD-1-GITR-L bispecific is a PD-1-directed GITR-L construct that demonstrated dose-dependent, immunologically driven tumor growth inhibition in syngeneic, genetically engineered and xenograft humanized mouse tumor models, with a dose-dependent correlation between target saturation and Ki67 and TIGIT upregulation on memory T cells. Anti-PD-1-GITR-L thus represents a bispecific approach to directing GITR agonism for cancer immunotherapy.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Proteína Relacionada con TNFR Inducida por Glucocorticoide/agonistas , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Receptores del Factor de Necrosis Tumoral/agonistas , Linfocitos T
16.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 166-175, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32038047

RESUMEN

Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and ß, encoded by trpA and trpB genes, that function as an αßßα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-ß interface of the tryptophan synthase αßßα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the ß subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.


Asunto(s)
Multimerización de Proteína , Streptococcus pneumoniae/enzimología , Triptófano Sintasa/química , Regulación Alostérica , Catálisis , Dominio Catalítico , Estructura Molecular , Dominios Proteicos , Pliegue de Proteína
17.
Structure ; 27(3): 449-463.e7, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595457

RESUMEN

Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species. Thus, the natural spectrum of Hsp104/ClpB molecular architectures and protein-remodeling activities remains largely unexplored. Here, we report two structures of Hsp104 from the thermophilic fungus Calcarisporiella thermophila (CtHsp104), a 2.70Å crystal structure and 4.0Å cryo-electron microscopy structure. Both structures reveal left-handed, helical assemblies with all domains clearly resolved. We thus provide the highest resolution and most complete view of Hsp104 hexamers to date. We also establish that CtHsp104 antagonizes several toxic protein-misfolding events in vivo where S. cerevisiae Hsp104 is ineffective, including rescue of TDP-43, polyglutamine, and α-synuclein toxicity. We suggest that natural Hsp104 variation is an invaluable, untapped resource for illuminating therapeutic disaggregases for fatal neurodegenerative diseases.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/farmacología , Mucorales/enzimología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacología , Humanos , Modelos Moleculares , Péptidos/antagonistas & inhibidores , Conformación Proteica en Hélice alfa , Deficiencias en la Proteostasis/prevención & control , alfa-Sinucleína/antagonistas & inhibidores
18.
IUCrJ ; 6(Pt 4): 649-664, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316809

RESUMEN

Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and ß (TrpB), functioning as a linear αßßα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the ß-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.

19.
Protein Sci ; 26(9): 1738-1748, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28580643

RESUMEN

Salmonella enterica serovar Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded ß-barrel transmembrane domain and a C-terminal domain (OmpACTD ). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD ) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD ), in closed form. In the open form of STOmpACTD , an aspartate residue from a long ß2-α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD , a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD , suggest a large conformational change that includes an extension of α3 helix by ordering a part of ß2-α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG-anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD , or possibly that of full length STOmpA.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/química , Peptidoglicano/metabolismo , Salmonella typhi/química , Sitios de Unión , Borrelia burgdorferi/metabolismo , Modelos Moleculares , Peptidoglicano/química , Conformación Proteica , Multimerización de Proteína , Salmonella typhi/metabolismo , Sulfatos/química , Sulfatos/metabolismo
20.
ACS Omega ; 2(8): 5159-5169, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28884166

RESUMEN

Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Although the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. In this study, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesis of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/ß hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, these findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA