Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Vis ; 21: 673-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26120272

RESUMEN

PURPOSE: Epiretinal fibrovascular membranes (FVMs) are a hallmark of proliferative diabetic retinopathy (PDR). Surgical removal of FVMs is often indicated to treat tractional retinal detachment. This potentially informative pathological tissue is usually disposed of after surgery without further examination. We developed a method for isolating and characterizing cells derived from FVMs and correlated their expression of specific markers in culture with that in tissue. METHODS: FVMs were obtained from 11 patients with PDR during diabetic vitrectomy surgery and were analyzed with electron microscopy (EM), comparative genomic hybridization (CGH), immunohistochemistry, and/or digested with collagenase II for cell isolation and culture. Antibody arrays and enzyme-linked immunosorbent assay (ELISA) were used to profile secreted angiogenesis-related proteins in cell culture supernatants. RESULTS: EM analysis of the FVMs showed abnormal vessels composed of endothelial cells with large nuclei and plasma membrane infoldings, loosely attached perivascular cells, and stromal cells. The cellular constituents of the FVMs lacked major chromosomal aberrations as shown with CGH. Cells derived from FVMs (C-FVMs) could be isolated and maintained in culture. The C-FVMs retained the expression of markers of cell identity in primary culture, which define specific cell populations including CD31-positive, alpha-smooth muscle actin-positive (SMA), and glial fibrillary acidic protein-positive (GFAP) cells. In primary culture, secretion of angiopoietin-1 and thrombospondin-1 was significantly decreased in culture conditions that resemble a diabetic environment in SMA-positive C-FVMs compared to human retinal pericytes derived from a non-diabetic donor. CONCLUSIONS: C-FVMs obtained from individuals with PDR can be isolated, cultured, and profiled in vitro and may constitute a unique resource for the discovery of cell signaling mechanisms underlying PDR that extends beyond current animal and cell culture models.


Asunto(s)
Retinopatía Diabética/patología , Actinas/metabolismo , Adulto , Angiopoyetina 1/metabolismo , Proliferación Celular , Separación Celular , Células Cultivadas , Hibridación Genómica Comparativa , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Membrana Epirretinal/genética , Membrana Epirretinal/metabolismo , Membrana Epirretinal/patología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
2.
J Exp Med ; 214(8): 2271-2282, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28698285

RESUMEN

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3 No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling.


Asunto(s)
Anticuerpos/uso terapéutico , CADASIL/terapia , Receptor Notch3/fisiología , Animales , Anticuerpos/inmunología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiopatología , Pericitos/fisiología , Receptor Notch3/inmunología , Transducción de Señal/fisiología
3.
Brain Res ; 1644: 118-26, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27174004

RESUMEN

Mutations in NOTCH 3 are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a neurological disorder characterized by stroke, and vascular cognitive impairment and dementia. Loss of vascular smooth muscle cells (VSMC) and accumulation of granular osmiophilic material (GOM) deposits are hallmarks of CADASIL. There are no therapies for CADASIL and experimental endpoints to examine the preclinical efficacy of potential drugs are lacking. This study aims to use a mouse carrying the C455R mutation in Notch 3 to identify biomarkers associated with CADASIL. Mass spectrometry and antibody arrays were used to explore the aorta and blood proteomes of CADASIL mice, ELISA assays were utilized for biomarker validation, a ligand-dependent assay was applied to examine the relationship between Notch signaling and biomarker expression, and retinal histology was performed for quantification of VSMC loss in arteries. Two-hundred day-old mice with the C455R CADASIL mutation in Notch 3 mice display robust VSMC loss in retinal arteries and had increased plasma levels of collagen18α1/endostatin (col18α1) and high-temperature requirement A serine peptidase 1 (HTRA1) and reduced levels of Notch 3 extracellular domain (N3ECD), compared to control wild type mice. Measurements of plasma endostatin, HTRA1 and N3ECD, along with VSMC quantification in retinal arteries, may serve as surrogate endpoints for assessing efficacy in preclinical therapeutic studies of CADASIL using mice.


Asunto(s)
CADASIL/sangre , CADASIL/diagnóstico , Receptor Notch3/genética , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Endostatinas/sangre , Serina Peptidasa A1 que Requiere Temperaturas Altas , Humanos , Ratones , Ratones Transgénicos , Músculo Liso Vascular/patología , Fenotipo , Proteómica , Arteria Retiniana/patología , Serina Endopeptidasas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA