Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Tissue Bank ; 24(1): 1-9, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35871425

RESUMEN

The field of regenerative medicine (RM) as an innovative technology has the ability to affect the healthcare system. It develops a variety of techniques through stem cell biology, genetics, bioengineering, biomaterial science, and tissue engineering to replace or restore the role of lost, disabled, or aging cells in the human body. However, the field's proficiency has still been underwhelming at the clinical trial level. This could be due to the innovation of such technologies, as well as their incredible nature. Therefore, managing the infrastructure framework for the safe and efficient application of the aforementioned field of science would help in the process of progress. In this context, the current review focuses on how to establish infrastructures for more effective RM.


Asunto(s)
Medicina Regenerativa , Ingeniería de Tejidos , Humanos , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Bioingeniería , Células Madre
2.
Bioorg Chem ; 127: 105996, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878449

RESUMEN

In the development of novel anti-α-glucosidase agents, we synthesized novel thieno[2,3-b]quinoline-hydrazones 9a-n by facile and efficient conventional chemical reactions. These compounds were characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Inhibitory activities of the title compounds were evaluated against yeast α-glucosidase. In particular, compounds 9c, 9d, and 9h exhibited high anti-α-glucosidase activity. Representatively, compound 9c with IC50 = 1.3 µM, was 576-times more potent than positive control acarbose. Molecular docking study of the most active compounds showed that these compounds formed important binding interactions at α-glucosidase active site. Molecular dynamics study of compound 9c was also performed and the obtained results were compared with acarbose. Compounds 9c, 9d, and 9h were also evaluated for in silico druglikeness properties and ADMET prediction. These studies showed that the title most potent compounds could be exploited as drug candidates.


Asunto(s)
Quinolinas , alfa-Glucosidasas , Acarbosa/farmacología , Inhibidores de Glicósido Hidrolasas/química , Hidrazonas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Quinolinas/química , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo
3.
Bioorg Chem ; 120: 105592, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121554

RESUMEN

A series of 5-nitrofuran-2-yl-thiadiazole linked to different cyclohexyl-2-(phenylamino)acetamides were rationally designed and synthesized. All synthetic compounds were evaluated for their urease inhibitory activity and exhibited good inhibitory potential against urease with IC50 values in the range of 0.94 - 6.78 µM as compared to the standard thiourea (IC50 = 22.50 µM). Compound 8g (IC50 = 0.94 µM) with a thiophene substituent at the R2 position was found to be the most active member of the series. Kinetic studies exhibited that the compound 8g was a non-competitive inhibitor. In silicostudy showed the critical interactions of potent inhibitors with the active site of the enzyme. These newly identified inhibitors of the urease enzyme can serve as leads for further research and development.


Asunto(s)
Nitrofuranos , Tiadiazoles , Acetamidas , Biología Computacional , Inhibidores Enzimáticos/química , Cinética , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiadiazoles/farmacología , Ureasa
4.
Adv Exp Med Biol ; 1387: 145-169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34961915

RESUMEN

Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.


Asunto(s)
Descubrimiento de Drogas , Pez Cebra , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Humanos , Pez Cebra/genética
5.
Chem Biodivers ; 19(7): e202100964, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35675562

RESUMEN

Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 µM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.


Asunto(s)
Agaricales , Monofenol Monooxigenasa , Inhibidores Enzimáticos/química , Hidrazinas , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
6.
Arch Pharm (Weinheim) ; 355(5): e2100313, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35132681

RESUMEN

A series of novel 4-phenylpiperazine-carbodithioate-N-phenylacetamide hybrids (6a-n) was designed, synthesized, and evaluated for their in vitro inhibitory activity against the metabolic enzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase. The obtained results showed that most of the synthesized compounds exhibited high to good anti-AChE and anti-BChE activity in the range of nanomolar concentrations in comparison to tacrine as a positive control. Molecular modeling of the most potent compounds 6e and 6i demonstrated that these compounds interacted with important residues of the AChE and BChE active sites. Moreover, all the newly synthesized compounds 6a-n had significant Ki values against α-glucosidase when compared with the positive control acarbose. Representatively, N-2-fluorophenylacetamide derivative 6l, with a Ki value of 0.98 nM as the most potent compound, was 126 times more potent than acarbose with a Ki value of 123.70 nM. This compound also fitted in the α-glucosidase active site and interacted with key residues. An in silico study of the druglikeness/absorption, distribution, metabolism, and excretion (ADME)/toxicity profile of the selected compounds 6e, 6i, and 6l predicts that these compounds are drug-like and have the appropriate properties in terms of ADME and toxicity.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Acarbosa , Acetanilidas , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Piperazinas , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo
7.
J Biochem Mol Toxicol ; 35(4): e22688, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33368871

RESUMEN

A series of new benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides 12a-n as potential anti-α-glucosidase agents were designed and synthesized. α-Glucosidase inhibition assay demonstrated that all the synthesized compounds 12a-n (half-maximal inhibitory concentration [IC50 ] values in the range of 40.7 ± 0.3-173.6 ± 1.9 µM) were more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 µM). Among them, the most potent compound was compound 12c, with inhibitory activity around 19-fold higher than acarbose. Since the most potent compound inhibited α-glucosidase in a competitive mode, a docking study of this compound was also performed into the active site of α-glucosidase. In vitro and in silico toxicity assays of the title compounds were also performed.


Asunto(s)
Acetamidas , Inhibidores de Glicósido Hidrolasas , Oxadiazoles , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , alfa-Glucosidasas/química , Acetamidas/síntesis química , Acetamidas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Oxadiazoles/síntesis química , Oxadiazoles/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química
8.
Mol Divers ; 25(4): 2571-2604, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32734589

RESUMEN

Thiophene-based analogs have been fascinated by a growing number of scientists as a potential class of biologically active compounds. Furthermore, they play a vital role for medicinal chemists to improve advanced compounds with a variety of biological effects. The current review envisioned to highlight some recent and particularly remarkable examples of the synthesis of thiophene derivatives by heterocyclization of various substrates from 2012 on.


Asunto(s)
Tiofenos
9.
Mol Divers ; 25(2): 877-888, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32189236

RESUMEN

Fourteen novel 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a-n were synthesized with good yields by performing click reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole and various benzyl azides. The synthesized compounds 8a-n were evaluated against yeast α-glucosidase, and all these compounds exhibited excellent inhibitory activity (IC50 values in the range of 85.6 ± 0.4-231.4 ± 1.0 µM), even much more potent than standard drug acarbose (IC50 = 750.0 µM). Among them, 4,5-diphenyl-imidazol-1,2,3-triazoles possessing 2-chloro and 2-bromo-benzyl moieties (compounds 8g and 8i) demonstrated the most potent inhibitory activities toward α-glucosidase. The kinetic study of the compound 8g revealed that this compound inhibited α-glucosidase in a competitive mode. Furthermore, docking calculations of these compounds were performed to predict the interaction mode of the synthesized compounds in the active site of α-glucosidase. A novel series of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a-n was synthesized with good yields by performing click reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1Himidazole and various benzyl azides. The synthesized compounds 8a-n were evaluated against yeast α-glucosidase and all these compounds exhibited excellent inhibitory activity (IC50 values in the range of 85.6 ± 0.4-231.4 ± 1.0 µM), even much more potent than standard drug acarbose (IC50 = 750.0 µM).


Asunto(s)
Hipoglucemiantes , Imidazoles , Triazoles , alfa-Glucosidasas/química , Diseño de Fármacos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/toxicidad , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/toxicidad , Cinética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Triazoles/síntesis química , Triazoles/química , Triazoles/farmacocinética , Triazoles/toxicidad
10.
Arch Pharm (Weinheim) ; 354(12): e2100179, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34467580

RESUMEN

Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.


Asunto(s)
Acetanilidas/farmacología , Cumarinas/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Acarbosa/farmacología , Acetanilidas/síntesis química , Acetanilidas/química , Animales , Células CACO-2 , Cumarinas/síntesis química , Cumarinas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Concentración 50 Inhibidora , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Ratas , Relación Estructura-Actividad
11.
Bioorg Chem ; 95: 103529, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884139

RESUMEN

A new series of N,N-dimethylbarbituric-pyridinium derivatives 7a-n was synthesized and evaluated as Helicobacter pylori urease inhibitors. All the synthesized compounds (IC50 = 10.37 ± 1.0-77.52 ± 2.7 µM) were more potent than standard inhibitor hydroxyurea against urease (IC50 = 100.00 ± 0.2 µM). Furthermore, comparison of IC50 values of the synthesized compounds with the second standard inhibitor thiourea (IC50 = 22.0 ± 0.03 µM) revealed that compounds 7a-b and 7f-h were more potent than thiourea. Molecular modeling study of the most potent compounds 7a, 7b, 7f, and 7g was also conducted. Additionally, the drug-likeness properties of the synthesized compounds, based on Lipinski rule and other filters, were evaluated.


Asunto(s)
Barbitúricos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Piridinas/química , Ureasa/antagonistas & inhibidores , Barbitúricos/farmacología , Disponibilidad Biológica , Simulación por Computador , Inhibidores Enzimáticos/farmacocinética , Helicobacter pylori/enzimología , Técnicas In Vitro , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Estructura Molecular , Piridinas/farmacología , Análisis Espectral/métodos
12.
Bioorg Chem ; 95: 103482, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838286

RESUMEN

In this study, a series of benzimidazole-1,2,3-triazole hybrids 8a-n as new α-glucosidase inhibitors were designed and synthesized. In vitro α-glucosidase inhibition activity results indicated that all the synthesized compounds (IC50 values ranging from 25.2 ± 0.9 to 176.5 ± 6.7 µM) exhibited more inhibitory activity in comparison to standard drug acarbose (IC50 = 750.0 ± 12.5 µM). Enzyme kinetic study on the most potent compound 8c revealed that this compound was a competitive inhibitor into α-glucosidase. Moreover, the docking study was performed in order to evaluation of interaction modes of the synthesized compounds in the active site of α-glucosidase and to explain structure-activity relationships of the most potent compounds and their corresponding analogs.


Asunto(s)
Bencimidazoles/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Triazoles/farmacología , alfa-Glucosidasas/metabolismo , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química
13.
Chem Biodivers ; 17(5): e1900710, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32187446

RESUMEN

A series of new deferasirox derivatives were synthesized through the reaction of monosubstituted hydrazides with 2-(2-hydroxyphenyl)-4H-benzo[e][1,3]oxazin-4-one. For the first time, deferasirox and some of its derivatives were evaluated for their in vitro inhibitory activity against Jack bean urease. The potencies of the members of this class of compounds are higher than that of acetohydroxamic acid. Two compounds, bearing tetrazole and hydrazine derivatives (bioisoester of carboxylate group), represented the most potent urease inhibitory activity with IC50 values of 1.268 and 3.254 µm, respectively. In silico docking studies were performed to delineate possible binding modes of the compounds with the enzyme, urease. Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its crucial amino acid residues, CME592 and His593. The overall results of urease inhibition have shown that these target compounds can be further optimized and developed as a lead skeleton for the discovery of novel urease inhibitors.


Asunto(s)
Deferasirox/farmacología , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Canavalia/enzimología , Deferasirox/síntesis química , Deferasirox/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo
14.
Arch Pharm (Weinheim) ; 353(9): e2000023, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32596826

RESUMEN

A new series of 1,2,3-triazole-(thio)barbituric acid hybrids 8a-n was designed and synthesized on the basis of potent pharmacophores with urease inhibitory activity. Therefore, these compounds were evaluated against Helicobacter pylori urease. The obtained result demonstrated that all the synthesized compounds, 8a-n, were more potent than the standard urease inhibitor, hydroxyurea. Moreover, among them, compounds 8a, 8c-e, 8g,h, and 8k,l exhibited higher urease inhibitory activities than the other standard inhibitor used: thiourea. Docking studies were performed with the synthesized compounds. Furthermore, molecular dynamic simulation of the most potent compounds, 8e and 8l, showed that these compounds interacted with the conserved residues Cys592 and His593, which belong to the active site flap and are essential for enzymatic activity. These interactions have two consequences: (a) blocking the movement of a flap at the entrance of the active site channel and (b) stabilizing the closed active site flap conformation, which significantly reduces the catalytic activity of urease. Calculation of the physicochemical and topological properties of the synthesized compounds 8a-n predicted that all these compounds can be orally active. The ADME prediction of compounds 8a-n was also performed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Tiobarbitúricos/farmacología , Triazoles/farmacología , Ureasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Tiobarbitúricos/síntesis química , Tiobarbitúricos/química , Tiourea/farmacología , Triazoles/síntesis química , Triazoles/química
15.
Arch Pharm (Weinheim) ; 353(10): e2000109, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32643792

RESUMEN

Coumarins and their derivatives are receiving increasing attention due to numerous biochemical and pharmacological applications. In this study, a series of novel coumarin-1,2,3-triazole-acetamide hybrids was tested against some metabolic enzymes including α-glycosidase (α-Gly), α-amylase (α-Amy), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), human carbonic anhydrase I (hCA I), and hCA II. The new coumarin-1,2,3-triazole-acetamide hybrids showed Ki values in the range of 483.50-1,243.04 nM against hCA I, 508.55-1,284.36 nM against hCA II, 24.85-132.85 nM against AChE, 27.17-1,104.36 nM against BChE, 590.42-1,104.36 nM against α-Gly, and 55.38-128.63 nM against α-Amy. The novel coumarin-1,2,3-triazole-acetamide hybrids had effective inhibition profiles against all tested metabolic enzymes. Also, due to the enzyme inhibitory effects of the new hybrids, they are potential drug candidates to treat diseases such as epilepsy, glaucoma, type-2 diabetes mellitus (T2DM), Alzheimer's disease (AD), and leukemia. Additionally, these inhibition effects were compared with standard enzyme inhibitors like acetazolamide (for hCA I and II), tacrine (for AChE and BChE), and acarbose (for α-Gly and α-Amy). Also, those coumarin-1,2,3-triazole-acetamide hybrids with the best inhibition score were docked into the active site of the indicated metabolic enzymes.


Asunto(s)
Acetamidas/farmacología , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Triazoles/farmacología , Acetamidas/síntesis química , Acetamidas/química , Cumarinas/síntesis química , Cumarinas/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
16.
Cell Tissue Bank ; 21(3): 339-347, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32157501

RESUMEN

Age-related macular degeneration as one of the most common causes of worldwide vision loss needs a proper approach for treatment. Therein, cell therapy and regenerative medicine can hold a great promise to be an effective approach. Accordingly, some preclinical and clinical studies were conducted to search around the therapeutic influence of stem cells in Age-related macular degeneration models and subjects. Hereupon, the purpose of the current review is to discuss the mechanisms of age-related macular degeneration, appropriate animal models along with suitable dosage and route of stem cell administration for its treatment.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Degeneración Macular/terapia , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Aprobación de Drogas , Humanos , Estados Unidos , United States Food and Drug Administration
17.
Bioorg Chem ; 92: 103206, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445191

RESUMEN

A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ±â€¯1.5 and 75.5 ±â€¯7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ±â€¯12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ±â€¯1.5 µM) and 6g (IC50 = 16.4 ±â€¯1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.


Asunto(s)
Cumarinas/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Triazoles/farmacología , alfa-Glucosidasas/metabolismo , Células Cultivadas , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Lactante , Cinética , Estructura Molecular , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
18.
Chem Biodivers ; 16(11): e1900370, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31523926

RESUMEN

A novel series of phthalimide-dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti-cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti-AChE and anti-BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h, respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug-like properties and were able to cross the BBB.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Ftalimidas/farmacología , Tiocarbamatos/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Butirilcolinesterasa/metabolismo , Electrophorus , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Caballos , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Ftalimidas/química , Tiocarbamatos/química
19.
Sci Rep ; 14(1): 9410, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658742

RESUMEN

Diabetes mellitus (DM) is a persistent, progressive, and multifaceted disease characterized by elevated blood glucose levels. Type 2 diabetes mellitus is associated with a relative deficit in insulin mainly due to beta cell dysfunction and peripheral insulin resistance. Metformin has been widely prescribed as a primary treatment option to address this condition. On the other hand, an emerging glucose-reducing agent known as imeglimin has garnered attention due to its similarity to metformin in terms of chemical structure. In this study, an innovative series of imeglimin derivatives, labeled 3(a-j), were synthesized through a one-step reaction involving an aldehyde and metformin. The chemical structures of these derivatives were thoroughly characterized using ESI-MS, 1H, and 13C NMR spectroscopy. In vivo tests on a zebrafish diabetic model were used to evaluate the efficacy of the synthesized compounds. All compounds 3(a-j) showed significant antidiabetic effects. It is worth mentioning that compounds 3b (FBS = 72.3 ± 7.2 mg/dL) and 3g (FBS = 72.7 ± 4.3 mg/dL) have antidiabetic effects comparable to those of the standard drugs metformin (FBS = 74.0 ± 5.1 mg/dL) and imeglimin (82.3 ± 5.2 mg/dL). In addition, a docking study was performed to predict the possible interactions between the synthesized compounds and both SIRT1 and GSK-3ß targets. The docking results were in good agreement with the experimental assay results.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Triazinas , Pez Cebra , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Metformina/farmacología , Metformina/química , Metformina/síntesis química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Modelos Animales de Enfermedad
20.
Regen Eng Transl Med ; 9(1): 83-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968268

RESUMEN

Purpose: Organoids are three-dimensional cultures of stem cells in an environment similar to the body's extracellular matrix. This is also a novel development in the realm of regenerative medicine. Stem cells can begin to develop into 3D structures by modifying signaling pathways. To form organoids, stem cells are transplanted into the extracellular matrix. Organoids have provided the required technologies to reproduce human tissues. As a result, it might be used in place of animal models in scientific study. The key goals of these investigations are research into viral and genetic illnesses, malignancies, and extracellular vesicles, pharmaceutical discovery, and organ transplantation. Organoids can help pave the road for precision medicine through genetic editing, pharmaceutical development, and cell therapy. Methods: PubMed, Google Scholar, and Scopus were used to search for all relevant papers written in English (1907-2021). The study abstracts were scrutinized. Studies on the use of stem-cell-derived organoids in regenerative medicine, organoids as 3D culture models for EVs analysis, and organoids for precision medicine were included. Articles with other irrelevant aims, meetings, letters, commentaries, congress and conference abstracts, and articles with no available full texts were excluded. Results: According to the included studies, organoids have various origins, types, and applications in regenerative and precision medicine, as well as an important role in studying extracellular vesicles. Conclusion: Organoids are considered a bridge that connects preclinical studies to clinical ones. However, the lack of a standardized protocol and other barriers addressed in this review, hinder the vast use of this technology. Lay Summary: Organoids are 3D stem cell propagations in biological or synthetic scaffolds that mimic ECM to allow intercellular or matrix-cellular crosstalk. Because these structures are similar to organs in the body, they can be used as research models. Organoids are medicine's future hope for organ transplantation, tumor biobank formation, and the development of precision medicine. Organoid models can be used to study cell-to-cell interactions as well as effective factors like inflammation and aging. Bioengineering technologies are also used to define the size, shape, and composition of organoids before transforming them into precise structures. Finally, the importance of organoid applications in regenerative medicine has opened a new window for a better understanding of biological research, as discussed in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA