Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(13): 133604, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067306

RESUMEN

Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of µ=11.3 is on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence times could test the quantum superposition principle at unprecedented scales and also place more stringent bounds on spontaneous collapse models.

2.
Science ; 380(6642): 274-278, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079693

RESUMEN

According to quantum mechanics, a physical system can be in any linear superposition of its possible states. Although the validity of this principle is routinely validated for microscopic systems, it is still unclear why we do not observe macroscopic objects to be in superpositions of states that can be distinguished by some classical property. Here we demonstrate the preparation of a mechanical resonator in Schrödinger cat states of motion, where the ∼1017 constituent atoms are in a superposition of two opposite-phase oscillations. We control the size and phase of the superpositions and investigate their decoherence dynamics. Our results offer the possibility of exploring the boundary between the quantum and classical worlds and may find applications in continuous-variable quantum information processing and metrology with mechanical resonators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA