RESUMEN
A series of 6-(4-substituted phenyl)-9-(tetrahydropyran-2-yl)purines 3-9, 6-(4-substituted phenyl)purines 10-16, 9-((4-substituted phenyl)sulfonyl)-6-(4-substituted phenyl)purines 17-32 were prepared and screened initially for their in vitro anticancer activity against selected human cancer cells (liver Huh7, colon HCT116, breast MCF7). 6-(4-Phenoxyphenyl) purine analogues 9, 16, 30-32, had potent cytotoxic activities. The most active purine derivatives 5-9, 14, 16, 18, 28-32 were further screened for their cytotoxic activity in hepatocellular cancer cells. 6-(4-Phenoxyphenyl)-9-(tetrahydropyran-2-yl)-9H-purine (9) had better cytotoxic activity (IC50 5.4 µM) than the well-known nucleobase analogue 5-FU and known nucleoside drug fludarabine on Huh7 cells. The structure-activity relationship studies reported that the substitution at C-6 positions in purine nucleus with the 4-phenoxyphenyl group is responsible for the anti-cancer activity.
Asunto(s)
Antineoplásicos/farmacología , Purinas/farmacología , Línea Celular , Citotoxinas , Humanos , Relación Estructura-ActividadRESUMEN
Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl-containing purine nucleobase analogs were tested for their in vitro anticancer activity against human cancer cells. Compounds 15, 17-24, 49, and 56 with IC50 values less than 10 µM were selected for further examination on an enlarged panel of liver cancer cell lines. Experiments revealed that compound 19 utilizes its high cytotoxic potential (IC50 < 5 µM) to induce apoptosis in vitro. Compound 19 displayed a KINOMEscan selectivity score S35 of 0.02 and S10 of 0.01 and demonstrated a significant selectivity against anaplastic lymphoma kinase (ALK) and Bruton's tyrosine kinase (BTK) over other kinases. Compounds 19, 21, 22, 23, and 56 complexed with ALK, BTK, and (discoidin domain-containing receptor 2) DDR2 were analyzed structurally for binding site interactions and binding affinities via molecular docking and molecular dynamics simulations. Compounds 19 and 56 displayed similar interactions with the activation loop of the kinases, while only compound 19 reached toward the multiple subsites of the active site. Cell cycle and signaling pathway analyses exhibited that compound 19 decreases phosho-Src, phospho-Rb, cyclin E, and cdk2 levels in liver cancer cells, eventually inducing apoptosis.
RESUMEN
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Estrés OxidativoRESUMEN
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.