Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38977635

RESUMEN

Congenital adrenal hyperplasia (CAH) is characterized by impaired adrenal cortisol production. Hydrocortisone (synthetic cortisol) is the drug-of-choice for cortisol replacement therapy, aiming to mimic physiological cortisol circadian rhythm. The hypothalamic-pituitary-adrenal (HPA) axis controls cortisol production through the pituitary adrenocorticotropic hormone (ACTH) and feedback mechanisms. The aim of this study was to quantify key mechanisms involved in the HPA axis activity regulation and their interaction with hydrocortisone therapy. Data from 30 healthy volunteers was leveraged: Endogenous ACTH and cortisol concentrations without any intervention as well as cortisol concentrations measured after dexamethasone suppression and single dose administration of (i) 0.5-10 mg hydrocortisone as granules, (ii) 20 mg hydrocortisone as granules and intravenous bolus. A stepwise model development workflow was used: A newly developed model for endogenous ACTH and cortisol was merged with a refined hydrocortisone pharmacokinetic model. The joint model was used to simulate ACTH and cortisol trajectories in CAH patients with varying degrees of enzyme deficiency, with or without hydrocortisone administration, and healthy individuals. Time-dependent ACTH-driven endogenous cortisol production and cortisol-mediated feedback inhibition of ACTH secretion processes were quantified and implemented in the model. Comparison of simulated ACTH and cortisol trajectories between CAH patients and healthy individuals showed the importance of administering hydrocortisone before morning ACTH secretion peak time to suppress ACTH overproduction observed in untreated CAH patients. The developed framework allowed to gain insights on the physiological mechanisms of the HPA axis regulation, its perturbations in CAH and interaction with hydrocortisone administration, paving the way towards cortisol replacement therapy optimization.

2.
Cytometry A ; 99(12): 1240-1249, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34089298

RESUMEN

Skeletal muscle function is inferred from the spatial arrangement of muscle fiber architecture, which corresponds to myofiber molecular and metabolic features. Myofiber features are often determined using immunofluorescence on a local sampling, typically obtained from a median region. This median region is assumed to represent the entire muscle. However, it remains largely unknown to what extent this local sampling represents the entire muscle. We present a pipeline to study the architecture of muscle fiber features over the entire muscle, including sectioning, staining, imaging to image quantification and data-driven analysis with Myofiber type were identified by the expression of myosin heavy chain (MyHC) isoforms, representing contraction properties. We reconstructed muscle architecture from consecutive cross-sections stained for laminin and MyHC isoforms. Examining the entire muscle using consecutive cross-sections is extremely laborious, we provide consideration to reduce the dataset without loosing spatial information. Data-driven analysis with over 150,000 myofibers showed spatial variations in myofiber geometric features, myofiber type, and the distribution of neuromuscular junctions over the entire muscle. We present a workflow to study histological changes over the entire muscle using high-throughput imaging, image quantification, and data-driven analysis. Our results suggest that asymmetric spatial distribution of these features over the entire muscle could impact muscle function. Therefore, instead of a single sampling from a median region, representative regions covering the entire muscle should be investigated in future studies.


Asunto(s)
Fibras Musculares Esqueléticas , Cadenas Pesadas de Miosina , Músculo Esquelético , Isoformas de Proteínas
3.
FASEB J ; 33(3): 4046-4053, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30485132

RESUMEN

Contractile properties of myofibers are dictated by the abundance of myosin heavy chain (MyHC) isoforms. MyHC composition designates muscle function, and its alterations could unravel differential muscle involvement in muscular dystrophies and aging. Current analyses are limited to visual assessments in which myofibers expressing multiple MyHC isoforms are prone to misclassification. As a result, complex patterns and subtle alterations are unidentified. We developed a high-throughput, data-driven myofiber analysis to quantitatively describe the variations in myofibers across the muscle. We investigated alterations in myofiber composition between genotypes, 2 muscles, and 2 age groups. We show that this analysis facilitates the discovery of complex myofiber compositions and its dependency on age, muscle type, and genetic conditions.-Raz, V., Raz, Y., van de Vijver, D., Bindellini, D., van Putten, M., van den Akker, E. B. High-throughput data-driven analysis of myofiber composition reveals muscle-specific disease and age-associated patterns.


Asunto(s)
Envejecimiento/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Cadenas Pesadas de Miosina/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986563

RESUMEN

Monitoring cortisol replacement therapy in congenital adrenal hyperplasia (CAH) patients is vital to avoid serious adverse events such as adrenal crises due to cortisol underexposure or metabolic consequences due to cortisol overexposure. The less invasive dried blood spot (DBS) sampling is an advantageous alternative to traditional plasma sampling, especially in pediatric patients. However, target concentrations for important disease biomarkers such as 17α-hydroxyprogesterone (17-OHP) are unknown using DBS. Therefore, a modeling and simulation framework, including a pharmacokinetic/pharmacodynamic model linking plasma cortisol concentrations to DBS 17-OHP concentrations, was used to derive a target morning DBS 17-OHP concentration range of 2-8 nmol/L in pediatric CAH patients. Since either capillary or venous DBS sampling is becoming more common in the clinics, the clinical applicability of this work was shown by demonstrating the comparability of capillary and venous cortisol and 17-OHP concentrations collected by DBS sampling, using a Bland-Altman and Passing-Bablok analysis. The derived target morning DBS 17-OHP concentration range is a first step towards providing improved therapy monitoring using DBS sampling and adjusting hydrocortisone (synthetic cortisol) dosing in children with CAH. In the future, this framework can be used to assess further research questions, e.g., target replacement ranges for the entire day.

5.
Front Pharmacol ; 13: 819590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370666

RESUMEN

Congenital adrenal hyperplasia (CAH) is the most common form of adrenal insufficiency in childhood; it requires cortisol replacement therapy with hydrocortisone (HC, synthetic cortisol) from birth and therapy monitoring for successful treatment. In children, the less invasive dried blood spot (DBS) sampling with whole blood including red blood cells (RBCs) provides an advantageous alternative to plasma sampling. Potential differences in binding/association processes between plasma and DBS however need to be considered to correctly interpret DBS measurements for therapy monitoring. While capillary DBS samples would be used in clinical practice, venous cortisol DBS samples from children with adrenal insufficiency were analyzed due to data availability and to directly compare and thus understand potential differences between venous DBS and plasma. A previously published HC plasma pharmacokinetic (PK) model was extended by leveraging these DBS concentrations. In addition to previously characterized binding of cortisol to albumin (linear process) and corticosteroid-binding globulin (CBG; saturable process), DBS data enabled the characterization of a linear cortisol association with RBCs, and thereby providing a quantitative link between DBS and plasma cortisol concentrations. The ratio between the observed cortisol plasma and DBS concentrations varies highly from 2 to 8. Deterministic simulations of the different cortisol binding/association fractions demonstrated that with higher blood cortisol concentrations, saturation of cortisol binding to CBG was observed, leading to an increase in all other cortisol binding fractions. In conclusion, a mathematical PK model was developed which links DBS measurements to plasma exposure and thus allows for quantitative interpretation of measurements of DBS samples.

6.
Front Pharmacol ; 13: 1090554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712688

RESUMEN

Introduction: Hydrocortisone is the standard of care in cortisol replacement therapy for congenital adrenal hyperplasia patients. Challenges in mimicking cortisol circadian rhythm and dosing individualization can be overcome by the support of mathematical modelling. Previously, a non-linear mixed-effects (NLME) model was developed based on clinical hydrocortisone pharmacokinetic (PK) pediatric and adult data. Additionally, a physiologically-based pharmacokinetic (PBPK) model was developed for adults and a pediatric model was obtained using maturation functions for relevant processes. In this work, a middle-out approach was applied. The aim was to investigate whether PBPK-derived maturation functions could provide a better description of hydrocortisone PK inter-individual variability when implemented in the NLME framework, with the goal of providing better individual predictions towards precision dosing at the patient level. Methods: Hydrocortisone PK data from 24 adrenal insufficiency pediatric patients and 30 adult healthy volunteers were used for NLME model development, while the PBPK model and maturation functions of clearance and cortisol binding globulin (CBG) were developed based on previous studies published in the literature. Results: Clearance (CL) estimates from both approaches were similar for children older than 1 year (CL/F increasing from around 150 L/h to 500 L/h), while CBG concentrations differed across the whole age range (CBGNLME stable around 0.5 µM vs. steady increase from 0.35 to 0.8 µM for CBG PBPK). PBPK-derived maturation functions were subsequently included in the NLME model. After inclusion of the maturation functions, none, a part of, or all parameters were re-estimated. However, the inclusion of CL and/or CBG maturation functions in the NLME model did not result in improved model performance for the CL maturation function (ΔOFV > -15.36) and the re-estimation of parameters using the CBG maturation function most often led to unstable models or individual CL prediction bias. Discussion: Three explanations for the observed discrepancies could be postulated, i) non-considered maturation of processes such as absorption or first-pass effect, ii) lack of patients between 1 and 12 months, iii) lack of correction of PBPK CL maturation functions derived from urinary concentration ratio data for the renal function relative to adults. These should be investigated in the future to determine how NLME and PBPK methods can work towards deriving insights into pediatric hydrocortisone PK.

7.
Pharmaceutics ; 13(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34575456

RESUMEN

Precision dosing of piperacillin/tazobactam in obese patients is compromised by sparse information on target-site exposure. We aimed to evaluate the appropriateness of current and alternative piperacillin/tazobactam dosages in obese and nonobese patients. Based on a prospective, controlled clinical trial in 30 surgery patients (15 obese/15 nonobese; 0.5-h infusion of 4 g/0.5 g piperacillin/tazobactam), piperacillin pharmacokinetics were characterized in plasma and at target-site (interstitial fluid of subcutaneous adipose tissue) via population analysis. Thereafter, multiple 3-4-times daily piperacillin/tazobactam short-term/prolonged (recommended by EUCAST) and continuous infusions were evaluated by simulation. Adequacy of therapy was assessed by probability of pharmacokinetic/pharmacodynamic target-attainment (PTA ≥ 90%) based on time unbound piperacillin concentrations exceed the minimum inhibitory concentration (MIC) during 24 h (%fT>MIC). Lower piperacillin target-site maximum concentrations in obese versus nonobese patients were explained by the impact of lean (approximately two thirds) and fat body mass (approximately one third) on volume of distribution. Simulated steady-state concentrations were 1.43-times, 95%CI = (1.27; 1.61), higher in plasma versus target-site, supporting targets of %fT>2×MIC instead of %fT>4×MIC during continuous infusion to avoid target-site concentrations constantly below MIC. In all obesity and renally impairment/hyperfiltration stages, at MIC = 16 mg/L, adequate PTA required prolonged (thrice-daily 4 g/0.5 g over 3.0 h at %fT>MIC = 50) or continuous infusions (24 g/3 g over 24 h following loading dose at %fT>MIC = 98) of piperacillin/tazobactam.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA