RESUMEN
Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.
Asunto(s)
Glucocorticoides , Trastornos Mentales , Humanos , Ensayos Analíticos de Alto Rendimiento , Secuencias Reguladoras de Ácidos Nucleicos , Sitios de Carácter Cuantitativo , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Predisposición Genética a la EnfermedadRESUMEN
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Asunto(s)
Encéfalo , Metilación de ADN , Epigénesis Genética , Corteza Prefrontal , Proteínas de Unión a Tacrolimus , Animales , Humanos , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Metilación de ADN/genética , Ratones , Encéfalo/metabolismo , Corteza Prefrontal/metabolismo , Masculino , Femenino , Epigénesis Genética/genética , Dexametasona/farmacología , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Adulto , Ratones Transgénicos , Persona de Mediana Edad , Hipocampo/metabolismo , Glucocorticoides/farmacología , GenotipoRESUMEN
Biological sex is a key variable influencing many physiological systems. Disease prevalence as well as treatment success can be modified by sex. Differences emerge already early in life and include pregnancy complications and adverse birth outcomes. The placenta is a critical organ for fetal development and shows sex-based differences in the expression of hormones and cytokines. Epigenetic regulation, such as DNA methylation (DNAm), may underlie the previously reported placental sexual dimorphism. We associated placental DNAm with fetal sex in three cohorts. Individual cohort results were meta-analyzed with random-effects modelling. CpG-sites differentially methylated with sex were further investigated regarding pathway enrichment, overlap with methylation quantitative trait loci (meQTLs), and hits from phenome-wide association studies (PheWAS). We evaluated the consistency of findings across tissues (CVS, i.e. chorionic villus sampling from early placenta, and cord blood) as well as with gene expression. We identified 10,320 epigenome-wide significant sex-differentially methylated probes (DMPs) spread throughout the epigenome of the placenta at birth. Most DMPs presented with lower DNAm levels in females. DMPs mapped to genes upregulated in brain, were enriched for neurodevelopmental pathways and significantly overlapped with meQTLs and PheWAS hits. Effect sizes were moderately correlated between CVS and placenta at birth, but only weakly correlated between birth placenta and cord blood. Sex differential gene expression in birth placenta was less pronounced and implicated genetic regions only marginally overlapped with those associated with differential DNAm. Our study provides an integrative perspective on sex-differential DNAm in perinatal tissues underscoring the possible link between placenta and brain.
Asunto(s)
Metilación de ADN , Placenta , Recién Nacido , Humanos , Embarazo , Femenino , Masculino , Metilación de ADN/genética , Placenta/metabolismo , Epigénesis Genética , Caracteres Sexuales , Desarrollo FetalRESUMEN
Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.
RESUMEN
BACKGROUND: Globally, one in ten babies is born preterm (<37 weeks), and 1-2% preterm at very low birth weight (VLBW, <1500 g). As adults, they are at increased risk for a plethora of health conditions, e.g., cardiometabolic disease, which may partly be mediated by epigenetic regulation. We compared blood DNA methylation between young adults born at VLBW and controls. METHODS: 157 subjects born at VLBW and 161 controls born at term, from the Helsinki Study of Very Low Birth Weight Adults, were assessed for peripheral venous blood DNA methylation levels at mean age of 22 years. Significant CpG-sites (5'-C-phosphate-G-3') were meta-analyzed against continuous birth weight in four independent cohorts (pooled n = 2235) with cohort mean ages varying from 0 to 31 years. RESULTS: In the discovery cohort, 66 CpG-sites were differentially methylated between VLBW adults and controls. Top hits were located in HIF3A, EBF4, and an intergenic region nearest to GLI2 (distance 57,533 bp). Five CpG-sites, all in proximity to GLI2, were hypermethylated in VLBW and associated with lower birth weight in the meta-analysis. CONCLUSION: We identified differentially methylated CpG-sites suggesting an epigenetic signature of preterm birth at VLBW present in adult life. IMPACT: Being born preterm at very low birth weight has major implications for later health and chronic disease risk factors. The mechanism linking preterm birth to later outcomes remains unknown. Our cohort study of 157 very low birth weight adults and 161 controls found 66 differentially methylated sites at mean age of 22 years. Our findings suggest an epigenetic mark of preterm birth present in adulthood, which opens up opportunities for mechanistic studies.
RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic was accompanied by an increase in mental health challenges including depression, stress, loneliness, and anxiety. Common genetic variants can contribute to the risk for psychiatric disorders and may present a risk factor in times of crises. However, it is unclear to what extent polygenic risk played a role in the mental health response to the COVID-19 pandemic. In this study, we investigate whether polygenic scores (PGSs) for mental health-related traits can distinguish between four resilience-vulnerability trajectories identified during the COVID-19 pandemic and associated lockdowns in 2020/21. We used multinomial regression in a genotyped subsample (n = 1316) of the CovSocial project. The most resilient trajectory characterized by the lowest mental health burden and the highest recovery rates served as the reference group. Compared to this most resilient trajectory, a higher value on the PGS for the well-being spectrum decreased the odds for individuals to be in one of the more vulnerable trajectories (adjusted R-square = 0.3%). Conversely, a higher value on the PGS for neuroticism increased the odds for individuals to be in one of the more vulnerable trajectories (adjusted R-square = 0.2%). Latent change in mental health burden extracted from the resilience-vulnerability trajectories was not associated with any PGS. Although our findings support an influence of PGS on mental health during COVID-19, the small added explained variance suggests limited utility of such genetic markers for the identification of vulnerable individuals in the general population.
RESUMEN
Electroconvulsive therapy (ECT) is commonly used to treat treatment-resistant depression (TRD). However, our knowledge of the ECT-induced molecular mechanisms causing clinical improvement is limited. To address this issue, we developed the single-center, prospective observational DetECT study ("Multimodal Biomarkers of ECT in TRD"; registered 18/07/2022, www.clinicalTrials.gov , NCT05463562). Its objective is to identify molecular, psychological, socioeconomic, and clinical biomarkers of ECT response in TRD. We aim to recruit n = 134 patients in 3 years. Over the course of 12 biweekly ECT sessions (± 7 weeks), participant blood is collected before and 1 h after the first and seventh ECT and within 1 week after the twelfth session. In pilot subjects (first n = 10), additional blood draws are performed 3 and 6 h after the first ECT session to determine the optimal post-ECT blood draw interval. In blood samples, multiomic analyses are performed focusing on genotyping, epigenetics, RNA sequencing, neuron-derived exosomes, purines, and immunometabolics. To determine clinical response and side effects, participants are asked weekly to complete four standardized self-rating questionnaires on depressive and somatic symptoms. Additionally, clinician ratings are obtained three times (weeks 1, 4, and 7) within structured clinical interviews. Medical and sociodemographic data are extracted from patient records. The multimodal data collected are used to perform the conventional statistics as well as mixed linear modeling to identify clusters that link biobehavioural measures to ECT response. The DetECT study can provide important insight into the complex mechanisms of ECT in TRD and a step toward biologically informed and data-driven-based ECT biomarkers.
Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Depresión/terapia , Multiómica , Trastorno Depresivo Resistente al Tratamiento/terapia , Biomarcadores , Resultado del Tratamiento , Estudios Observacionales como AsuntoRESUMEN
Childhood maltreatment is an important risk factor for adult depression and has been associated with changes in the hypothalamic pituitary adrenal (HPA) axis, including cortisol secretion and methylation of the FKBP5 gene. Furthermore, associations between depression and HPA changes have been reported. This study investigated the associations of whole-blood FKBP5 mRNA levels, serum cortisol levels, childhood maltreatment, and depressive symptoms with the whole-blood methylation status (assessed via target bisulfite sequencing) of 105 CpGs at the FKBP5 locus using data from the general population-based Study of Health in Pomerania (SHIP) (N = 203). Both direct and interaction effects with the rs1360780 single-nucleotide polymorphism were investigated. Nominally significant associations of main effects on methylation of a single CpG site were observed at intron 3, intron 7, and the 3'-end of the gene. Additionally, methylation at two clusters at the 3'-end and intron 7 were nominally associated with childhood maltreatment × rs1360780 and depressive symptoms × rs1360780, respectively. The results add to the understanding of molecular mechanisms underlying the emergence of depression and could aid the development of personalised depression therapy and drug development.
Asunto(s)
Maltrato a los Niños , Metilación de ADN , Trastorno Depresivo , Proteínas de Unión a Tacrolimus , Adulto , Niño , Humanos , Trastorno Depresivo/genética , Hidrocortisona , Sistema Hipotálamo-Hipofisario/metabolismo , Intrones/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas de Unión a Tacrolimus/genéticaRESUMEN
This review article provides insights into the role of genetic diagnostics in adult mental health disorders. The importance of genetic factors in the development of mental illnesses, from rare genetic syndromes to common complex genetic disorders, is described. Current clinical characteristics that may warrant a genetic diagnostic work-up are highlighted, including intellectual disability, autism spectrum disorders and severe psychiatric conditions with specific comorbidities, such as organ malformations or epilepsy. The review discusses when genetic diagnostics are recommended according to current guidelines as well as situations where they might be considered even in the absence of explicit guideline recommendations. This is followed by an overview of the procedures and the currently used diagnostic methods. Current limitations and possible developments in the field of genetic diagnostics in psychiatry are discussed, including the fact that, for many mental health conditions, genetic testing is not yet part of standard clinical practice; however, in summary genetic causes should be considered more frequently in certain clinical constellations, and genetic diagnostics and counselling should be offered where appropriate.
RESUMEN
FKBP5 is an important stress-regulatory gene implicated in stress-related psychiatric diseases. Single nucleotide polymorphisms of the FKBP5 gene were shown to interact with early life stress to alter the glucocorticoid-related stress response and moderate disease risk. Demethylation of cytosine-phosphate-guanine-dinucleotides (CpGs) in regulatory glucocorticoid-responsive elements was suggested to be the mediating epigenetic mechanism for long-term stress effects, but studies on Fkbp5 DNA methylation (DNAm) in rodents are so far limited. We evaluated the applicability of high-accuracy DNA methylation measurement via targeted bisulfite sequencing (HAM-TBS), a next-generation sequencing-based technology, to allow a more in-depth characterisation of the DNA methylation of the murine Fkbp5 locus in three different tissues (blood, frontal cortex and hippocampus). In this study, we not only increased the number of evaluated sites in previously described regulatory regions (in introns 1 and 5), but also extended the evaluation to novel, possibly relevant regulatory regions of the gene (in intron 8, the transcriptional start site, the proximal enhancer and CTCF-binding sites within the 5'UTR). We here describe the assessment of HAM-TBS assays for a panel of 157 CpGs with possible functional relevance in the murine Fkbp5 gene. DNAm profiles were tissue-specific, with lesser differences between the two brain regions than between the brain and blood. Moreover, we identified DNAm changes in the Fkbp5 locus after early life stress exposure in the frontal cortex and blood. Our findings indicate that HAM-TBS is a valuable tool for broader exploration of the DNAm of the murine Fkbp5 locus and its involvement in the stress response.
Asunto(s)
Metilación de ADN , Glucocorticoides , Animales , Ratones , Sulfitos , Epigénesis GenéticaRESUMEN
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Asunto(s)
Trastornos Mentales , Neocórtex , Humanos , Trastornos Mentales/genética , Envejecimiento/genética , Neuronas , Genotipo , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Psychological trauma exposure and posttraumatic stress disorder (PTSD) have been associated with advanced epigenetic age. However, whether epigenetic aging measured at the time of trauma predicts the subsequent development of PTSD outcomes is unknown. Moreover, the neural substrates underlying posttraumatic outcomes associated with epigenetic aging are unclear. METHODS: We examined a multi-ancestry cohort of women and men (n = 289) who presented to the emergency department (ED) after trauma. Blood DNA was collected at ED presentation, and EPIC DNA methylation arrays were used to assess four widely used metrics of epigenetic aging (HorvathAge, HannumAge, PhenoAge, and GrimAge). PTSD symptoms were evaluated longitudinally at the time of ED presentation and over the ensuing 6 months. Structural and functional neuroimaging was performed 2 weeks after trauma. RESULTS: After covariate adjustment and correction for multiple comparisons, advanced ED GrimAge predicted increased risk for 6-month probable PTSD diagnosis. Secondary analyses suggested that the prediction of PTSD by GrimAge was driven by worse trajectories for intrusive memories and nightmares. Advanced ED GrimAge was also associated with reduced volume of the whole amygdala and specific amygdala subregions, including the cortico-amygdaloid transition and the cortical and accessory basal nuclei. CONCLUSIONS: Our findings shed new light on the relation between biological aging and trauma-related phenotypes, suggesting that GrimAge measured at the time of trauma predicts PTSD trajectories and is associated with relevant brain alterations. Furthering these findings has the potential to enhance early prevention and treatment of posttraumatic psychiatric sequelae.
Asunto(s)
Trastornos por Estrés Postraumático , Masculino , Humanos , Femenino , Trastornos por Estrés Postraumático/psicología , Envejecimiento , Amígdala del Cerebelo/diagnóstico por imagen , Neuroimagen Funcional , Epigénesis GenéticaRESUMEN
FKBP51 is an important inhibitor of the glucocorticoid receptor (GR) signaling. High FKBP51 levels are associated to stress-related disorders, which are linked to GR resistance. SUMO conjugation to FKBP51 is necessary for FKBP51's inhibitory action on GR. The GR/FKBP51 pathway is target of antidepressant action. Thus we investigated if these drugs could inhibit FKBP51 SUMOylation and therefore restore GR activity. Screening cells using Ni2+ affinity and in vitro SUMOylation assays revealed that tricyclic antidepressants- particularly clomipramine- inhibited FKBP51 SUMOylation. Our data show that clomipramine binds to FKBP51 inhibiting its interaction with PIAS4 and therefore hindering its SUMOylation. The inhibition of FKBP51 SUMOylation decreased its binding to Hsp90 and GR facilitating FKBP52 recruitment, and enhancing GR activity. Reduction of PIAS4 expression in rat primary astrocytes impaired FKBP51 interaction with GR, while clomipramine could no longer exert its inhibitory action. This mechanism was verified in vivo in mice treated with clomipramine. These results describe the action of antidepressants as repressors of FKBP51 SUMOylation as a molecular switch for restoring GR sensitivity, thereby providing new potential routes of antidepressant intervention.
Asunto(s)
Receptores de Glucocorticoides , Sumoilación , Animales , Antidepresivos Tricíclicos/farmacología , Clomipramina , Regulación de la Expresión Génica , Ratones , Ratas , Receptores de Glucocorticoides/metabolismo , Proteínas de Unión a Tacrolimus/metabolismoRESUMEN
Improving response and remission rates in major depressive disorder (MDD) remains an important challenge. Matching patients to the treatment they will most likely respond to should be the ultimate goal. Even though numerous studies have investigated patient-specific indicators of treatment efficacy, no (bio)markers or empirical tests for use in clinical practice have resulted as of now. Therefore, clinical decisions regarding the treatment of MDD still have to be made on the basis of questionnaire- or interview-based assessments and general guidelines without the support of a (laboratory) test. We conducted a narrative review of current approaches to characterize and predict outcome to pharmacological treatments in MDD. We particularly focused on findings from newer computational studies using machine learning and on the resulting implementation into clinical decision support systems. The main issues seem to rest upon the unavailability of robust predictive variables and the lacking application of empirical findings and predictive models in clinical practice. We outline several challenges that need to be tackled on different stages of the translational process, from current concepts and definitions to generalizable prediction models and their successful implementation into digital support systems. By bridging the addressed gaps in translational psychiatric research, advances in data quantity and new technologies may enable the next steps toward precision psychiatry.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/terapia , Depresión , Resultado del Tratamiento , Encuestas y CuestionariosRESUMEN
The placenta is a central organ during early development, influencing trajectories of health and disease. DNA methylation (DNAm) studies of human placenta improve our understanding of how its function relates to disease risk. However, DNAm studies can be biased by cell type heterogeneity, so it is essential to control for this in order to reduce confounding and increase precision. Computational cell type deconvolution approaches have proven to be very useful for this purpose. For human placenta, however, an assessment of the performance of these estimation methods is still lacking. Here, we examine the performance of a newly available reference-based cell type estimation approach and compare it to an often-used reference-free cell type estimation approach, namely RefFreeEWAS, in placental genome-wide DNAm samples taken at birth and from chorionic villus biopsies early in pregnancy using three independent studies comprising over 1000 samples. We found both reference-free and reference-based estimated cell type proportions to have predictive value for DNAm, however, reference-based cell type estimation outperformed reference-free estimation for the majority of data sets. Reference-based cell type estimations mirror previous histological knowledge on changes in cell type proportions through gestation. Further, CpGs whose variation in DNAm was largely explained by reference-based estimated cell type proportions were in the proximity of genes that are highly tissue-specific for placenta. This was not the case for reference-free estimated cell type proportions. We provide a list of these CpGs as a resource to help researchers to interpret results of existing studies and improve future DNAm studies of human placenta.
Asunto(s)
Islas de CpG/genética , Metilación de ADN , Epigénesis Genética , Placenta/metabolismo , Diagnóstico Prenatal/métodos , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/prevención & control , Edad Gestacional , Humanos , Recién Nacido , Masculino , Placenta/citología , Preeclampsia/diagnóstico , Preeclampsia/genética , Preeclampsia/prevención & control , Embarazo , Reproducibilidad de los ResultadosRESUMEN
Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, Neurobiol. Learn. Mem. 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.
Asunto(s)
Potenciales de Acción , Encéfalo/fisiología , Genoma , Animales , Expresión Génica , Genes Inmediatos-Precoces , Humanos , Memoria , Plasticidad NeuronalRESUMEN
Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] ≤ 0.1 and absolute fold change [FC] expression ≥ 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn's cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.
Asunto(s)
Glucocorticoides/efectos adversos , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Estudios de Cohortes , Metilación de ADN/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Estrés Fisiológico/efectos de los fármacosRESUMEN
Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.
Asunto(s)
Epigénesis Genética , Animales , Metilación de ADN , Epigenómica , Interacción Gen-Ambiente , HumanosRESUMEN
Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g., malondialdehyde [MDA]-modified molecules) involved in homeostasis, thereby causing impaired complement regulation. Considering the critical role of CFH in inhibiting alternative pathway activation on MDA-modified surfaces, we performed an unbiased genome-wide search for genetic variants that modify the ability of plasma CFH to bind MDA in 1,830 individuals and characterized the mechanistic basis and the functional consequences of this. In a cohort of healthy individuals, we identified rs1061170 in CFH and the deletion of CFHR3 and CFHR1 as dominant genetic variants that modify CFH/FHL-1 binding to MDA. We further demonstrated that FHR1 and FHR3 compete with CFH for binding to MDA-epitopes and that FHR1 displays the highest affinity toward MDA-epitopes compared to CFH and FHR3. Moreover, FHR1 bound to MDA-rich areas on necrotic cells and prevented CFH from mediating its cofactor activity on MDA-modified surfaces, resulting in enhanced complement activation. These findings provide a mechanistic explanation as to why the deletion of CFHR3 and CFHR1 is protective in AMD and highlight the importance of genetic variants within the CFH/CFHR3/CFHR1 locus in the recognition of altered-self in tissue homeostasis.
Asunto(s)
Proteínas Sanguíneas/genética , Proteínas Inactivadoras del Complemento C3b/genética , Degeneración Macular/genética , Anciano , Factor H de Complemento/genética , Epítopos/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/patología , Masculino , Malondialdehído/metabolismo , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Unión ProteicaRESUMEN
The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.