Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
APL Bioeng ; 4(4): 041505, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33195959

RESUMEN

Tumor cells migrate through changing microenvironments of diseased and healthy tissue, making their migration particularly challenging to describe. To better understand this process, computational models have been developed for both the ameboid and mesenchymal modes of cell migration. Here, we review various approaches that have been used to account for the physical environment's effect on cell migration in computational models, with a focus on their application to understanding cancer metastasis and the related phenomenon of durotaxis. We then discuss how mesenchymal migration models typically simulate complex cell-extracellular matrix (ECM) interactions, while ameboid migration models use a cell-focused approach that largely ignores ECM when not acting as a physical barrier. This approach greatly simplifies or ignores the mechanosensing ability of ameboid migrating cells and should be reevaluated in future models. We conclude by describing future model elements that have not been included to date but would enhance model accuracy.

2.
Lab Chip ; 20(4): 806-822, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31971187

RESUMEN

An integrated photoconversion and cell sorting parallel-plate chromatography channel enabling the measurement of instantaneous and average velocities of cells mediating adhesion in flow fields was engineered to study the mechanisms underlying adhesion to selectins by metastatic cancer cells. Through the facile enrichment of cells into subfractions of differing adhesive behaviors and a fluorescent velocity probe amenable to off-chip analysis, underlying, causal molecular profiles implicated in differing adhesive phenotypes of metastatic cancer cells could be interrogated. This analytical method revealed selectin-mediated rolling adhesion to be strongly associated with expression of selectin ligands, correlations that vary with ligand type and rolling velocity magnitude. Discrete selectin ligand expression profiles were also found to underlie persistent versus non-persistent adhesion on selectins, suggestive of divergent regulatory mechanisms. This integrated cell sorting and photoconversion microfluidic platform thus enables in vitro analysis and comparisons of adhesive phenotypes as they relate to mechanisms of cancer cell metastasis in the context of selectin mediated adhesion, revealing new insights into potential cancer dissemination pathways.


Asunto(s)
Cromatografía , Microfluídica , Adhesión Celular , Movimiento Celular , Fenotipo
3.
iScience ; 23(11): 101751, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33241198

RESUMEN

A lymph node sinus-on-a-chip adhesion microfluidic platform that recapitulates the hydrodynamic microenvironment of the lymph node subcapsular sinus was engineered. This device was used to interrogate the effects of lymph node remodeling on cellular adhesion in fluid flow relevant to lymphatic metastasis. Wall shear stress levels analytically estimated and modeled after quiescent and diseased/inflamed lymph nodes were experimentally recapitulated using a flow-based microfluidic perfusion system to assess the effects of physiological flow fields on human metastatic cancer cell adhesion. Results suggest that both altered fluid flow profiles and presentation of adhesive ligands, which are predicted to manifest within the lymph node subcapsular sinus as a result of inflammation-induced remodeling, and the presence of lymph-borne monocytic cells may synergistically contribute to the dynamic extent of cell adhesion in flow relevant to lymph node invasion by cancer and monocytic immune cells during lymphatic metastasis.

4.
Adv Biosyst ; 3(3): e1800328, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-32627398

RESUMEN

An integrated, parallel-plate microfluidic device is engineered to interrogate and fractionate cells based on their adhesivity to a substrate surface functionalized with adhesive ligand in a tightly controlled flow environment to elucidate associated cell-intrinsic pathways. Wall shear stress levels and endothelial presentation of E-selectin are modeled after the inflamed vasculature microenvironment in order to simulate in vitro conditions under which in vivo hematogenous metastasis occurs. Based on elution time from the flow channel, the collection of separate fractions of cells-noninteracting and interacting-at high yields and viabilities enables multiple postperfusion analyses, including flow cytometry, in vivo metastasis modeling, and transcriptomic analysis. This platform enables the interrogation of flow-regulated cell molecular profiles, such as (co)expression levels of natively expressed selectin ligands sLex , CD44, and carcinoembryonic antigen, and cancer stem cell marker CD24. This additionally reveals E-selectin adhesivity exhibited by metastatic human colon carcinoma cells to be a transient phenotype. Facile and rapid, this methodology for unbiased, label free sorting of large populations of cells based on their adhesion in flow represents a method of studying flow-regulated adhesion in vitro for the identification of molecular drug targets for development as antimetastatic cancer therapeutics.


Asunto(s)
Moléculas de Adhesión Celular , Adhesión Celular/fisiología , Cromatografía/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Metástasis de la Neoplasia/fisiopatología , Animales , Moléculas de Adhesión Celular/análisis , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/química , Neoplasias del Colon/metabolismo , Selectina E , Diseño de Equipo , Humanos , Ratones , Ratones SCID , Fenotipo
5.
Cell Syst ; 7(5): 496-509.e6, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30414924

RESUMEN

Hematogenous metastasis is a multistep, selectin-regulated process whose mechanisms remain poorly understood. To investigate this biological pathway of cancer dissemination and better understand circulating cancer cells, we developed a high-throughput methodology that integrates organ-on-chip-like microfluidic and photoconvertible protein technologies. Our approach can ascribe single-cell velocity as a traceable cell property for off-chip analysis of the direct relationships between cell molecular profiles and adhesive phenotypes in the context of physiologically relevant fluid flow. We interrogate how natively expressed selectin ligands relate to colon cancer cell rolling frequencies and velocities and provide context for previously reported disparities in in vitro and in vivo models of selectin-mediated adhesion and metastasis. This integrated methodology represents a versatile approach for the development of anti-metastatic therapeutics as well as to generate and test mechanistic hypotheses regarding spatiotemporal processes that occur over timescales of seconds to hours with single-cell resolution.


Asunto(s)
Neoplasias del Colon/patología , Fluorometría/métodos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes , Línea Celular Tumoral , Femenino , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Oncotarget ; 8(48): 83585-83601, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137366

RESUMEN

The ability of leukocytic cells to engage selectins via rolling adhesion is critical to inflammation, but selectins are also implicated in mediating metastatic dissemination. Using a microfluidic- and flow-based cell adhesion chromatography experimental and analytical technique, we interrogated the cell-subtype differences in engagement and sustainment of rolling adhesion on P-, E-, and L-selectin-functionalized surfaces in physiological flow. Our results indicate that, particularly at low concentrations of P-selectin, metastatic but not leukocytic cells exhibit reduced rolling adhesion persistence, whereas both cell subtypes exhibited reduced persistence on L-selectin and high persistence on E-selectin, differences not revealed by flow cytometry analysis or reflected in the extent or velocity of rolling adhesion. Conditions under which adhesion persistence was found to be significantly reduced corresponded to those exhibiting the greatest sensitivity to a selectin-antagonist. Our results suggest that potentially therapeutically exploitable differences in metastatic and leukocytic cell subtype interactions with selectins in physiological flow are identifiable through implementation of functional assays of adhesion persistence in hemodynamic flow utilizing this integrated, flow-based cell adhesion chromatography analytical technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA