Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 60-66, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867046

RESUMEN

Broken time-reversal symmetry in the absence of spin order indicates the presence of unusual phases such as orbital magnetism and loop currents1-4. The recently discovered kagome superconductors AV3Sb5 (where A is K, Rb or Cs)5,6 display an exotic charge-density-wave (CDW) state and have emerged as a strong candidate for materials hosting a loop current phase. The idea that the CDW breaks time-reversal symmetry7-14 is, however, being intensely debated due to conflicting experimental data15-17. Here we use laser-coupled scanning tunnelling microscopy to study RbV3Sb5. By applying linearly polarized light along high-symmetry directions, we show that the relative intensities of the CDW peaks can be reversibly switched, implying a substantial electro-striction response, indicative of strong nonlinear electron-phonon coupling. A similar CDW intensity switching is observed with perpendicular magnetic fields, which implies an unusual piezo-magnetic response that, in turn, requires time-reversal symmetry breaking. We show that the simplest CDW that satisfies these constraints is an out-of-phase combination of bond charge order and loop currents that we dub a congruent CDW flux phase. Our laser scanning tunnelling microscopy data open the door to the possibility of dynamic optical control of complex quantum phenomenon in correlated materials.


Asunto(s)
Superconductividad , Microscopía de Túnel de Rastreo , Campos Magnéticos , Fonones , Electrones , Luz
2.
Nature ; 613(7942): 48-52, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600069

RESUMEN

Achieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe2 (refs. 1-5). Some of these systems have a polar crystal structure that gives rise to ferroelectricity, in which the interlayer polarization exhibits bistability driven by external electric fields6-8. Here we show that bilayer Td-MoTe2 simultaneously exhibits ferroelectric switching and superconductivity. Notably, a field-driven, first-order superconductor-to-normal transition is observed at its ferroelectric transition. Bilayer Td-MoTe2 also has a maximum in its superconducting transition temperature (Tc) as a function of carrier density and temperature, allowing independent control of the superconducting state as a function of both doping and polarization. We find that the maximum Tc is concomitant with compensated electron and hole carrier densities and vanishes when one of the Fermi pockets disappears with doping. We argue that this unusual polarization-sensitive two-dimensional superconductor is driven by an interband pairing interaction associated with nearly nested electron and hole Fermi pockets.

3.
Nano Lett ; 23(16): 7576-7583, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535801

RESUMEN

Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt-Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system.

4.
Nature ; 602(7896): 216-217, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140382
5.
Nano Lett ; 21(10): 4357-4364, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33973791

RESUMEN

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition.

6.
Phys Rev Lett ; 127(8): 087601, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477429

RESUMEN

Doping ferroelectrics with carriers is often detrimental to polarization. This makes the design and discovery of metals that undergo a ferroelectriclike transition challenging. In this Letter, we show from first principles that the oxygen octahedral rotations in perovskites are often enhanced by electron doping, and this can be used as a means to strengthen the structural polarization in certain hybrid-improper ferroelectrics-compounds in which the polarization is not stabilized by the long-range Coulomb interactions but is instead induced by a trilinear coupling to octahedral rotations. We use this design strategy to predict a cation ordered Ruddlesden-Popper compound that can be driven into a metallic ferroelectriclike phase via electrolyte gating.

7.
Phys Rev Lett ; 124(16): 167203, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32383953

RESUMEN

Spin-1 antiferromagnets are abundant in nature, but few theories exist to understand their properties and behavior when geometric frustration is present. Here we study the S=1 kagome compound Na_{2}Ti_{3}Cl_{8} using a combination of density functional theory, exact diagonalization, and density matrix renormalization group approaches to achieve a first principles supported explanation of its exotic magnetic phases. We find that the effective magnetic Hamiltonian includes essential non-Heisenberg terms that do not stem from spin-orbit coupling, and both trimerized and spin-nematic magnetic phases are relevant. The experimentally observed structural transition to a breathing kagome phase is driven by spin-lattice coupling, which favors the trimerized magnetic phase against the quadrupolar one. We thus show that lattice effects can be necessary to understand the magnetism in frustrated magnetic compounds and surmise that Na_{2}Ti_{3}Cl_{8} is a compound that cannot be understood from only electronic or only lattice Hamiltonians, very much like VO_{2}.

8.
Nature ; 560(7717): 174-175, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30076377
9.
Nature ; 502(7472): 532-6, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24132232

RESUMEN

The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics-doping or strain-in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

10.
Phys Rev Lett ; 120(18): 187203, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775328

RESUMEN

We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.

12.
Phys Rev Lett ; 127(4): 049702, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355961
13.
Phys Rev Lett ; 115(25): 256402, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722932

RESUMEN

The stationary functional of the density functional plus embedded dynamical mean field theory formalism to perform free energy calculations and structural relaxations is implemented for the first time. Here, the first order error in the density leads to a much smaller, second order error in the free energy. The method is applied to several well-known correlated materials: metallic SrVO_{3}, Mott insulating FeO, and elemental cerium, to show that it predicts the lattice constants with good accuracy. In cerium, we show that our method predicts the isostructural transition between the α and γ phases, and resolve the long-standing controversy in the driving mechanism of this transition.

14.
Phys Rev Lett ; 114(9): 096403, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793833

RESUMEN

Discovery of new transition metal compounds with large spin orbit coupling coexisting with strong electron-electron correlation among the d electrons is essential for understanding the physics that emerges from the interplay of these two effects. In this study, we predict a novel class of J_{eff}=1/2 Mott insulators in a family of fluoride compounds that are previously synthesized, but not characterized extensively. First principles calculations in the level of all electron density functional theory+dynamical mean field theory indicate that these compounds have large Mott gaps and some of them exhibit unprecedented proximity to the ideal, SU(2) symmetric J_{eff}=1/2 limit.

15.
Nat Commun ; 15(1): 5304, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914537

RESUMEN

Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3 that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems.

16.
Nat Commun ; 15(1): 1399, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360692

RESUMEN

Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO2, PtCoO2) are the most conductive oxides known, for reasons that remain poorly understood. Their room-temperature conductivity can exceed that of Au, while their low-temperature electronic mean-free-paths reach an astonishing 20 µm. It is widely accepted that these materials must be ultrapure to achieve this, although the methods for their growth (which produce only small crystals) are not typically capable of such. Here, we report a different approach to PdCoO2 crystal growth, using chemical vapor transport methods to achieve order-of-magnitude gains in size, the highest structural qualities yet reported, and record residual resistivity ratios ( > 440). Nevertheless, detailed mass spectrometry measurements on these materials reveal that they are not ultrapure in a general sense, typically harboring 100s-of-parts-per-million impurity levels. Through quantitative crystal-chemical analyses, we resolve this apparent dichotomy, showing that the vast majority of impurities are forced to reside in the Co-O octahedral layers, leaving the conductive Pd sheets highly pure (∼1 ppm impurity concentrations). These purities are shown to be in quantitative agreement with measured residual resistivities. We thus conclude that a sublattice purification mechanism is essential to the ultrahigh low-temperature conductivity and mean-free-path of metallic delafossites.

17.
Nat Commun ; 15(1): 5008, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866766

RESUMEN

Kagome vanadates AV3Sb5 display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV6Sn6, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The ARPES measurements show minimal changes to the electronic structure after the onset of CDW. However, STM quasiparticle interference (QPI) measurements show strong dispersing features related to the CDW ordering vectors. A plausible explanation is the presence of a strong momentum-dependent scattering potential peaked at the CDW wavevector, associated with the existence of competing CDW instabilities. Our STM results further indicate that the bands most affected by the CDW are near vHS, analogous to the case of AV3Sb5 despite very different CDW wavevectors.

18.
Nat Commun ; 14(1): 7795, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016999

RESUMEN

The Sabatier principle and the scaling relations have been widely used to search for and screen new catalysts in the field of catalysis. However, these powerful tools can also serve as limitations of catalyst control and breakthrough. To overcome this challenge, this work proposes an efficient method of studying catalyst control by support polarization from first-principles. The results demonstrate that the properties of catalysts are determined by support polarization, irrespective of the magnitude of spontaneous polarization of support. The approach enables elucidating the scaling relations between binding energies at various polarization values of support. Moreover, we observe the breakdown of scaling relations for the surface controlled by support polarization. By studying the surface electronic structure and decomposing the induced charge into contributions from different atoms and orbitals, we identify the inherent structural property of the interface that leads to the breaking of the scaling relations. Specifically, the displacements of the underlying oxide support impose its symmetry on the catalyst, causing the scaling relations between different adsorption sites to break.

19.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522321

RESUMEN

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

20.
Phys Rev Lett ; 107(25): 257602, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22243113

RESUMEN

We discovered from first principles an unusual polar state in the low n Sr(n+1)Ti(n)O(3n+1) Ruddlesden-Popper (RP) layered perovskites in which ferroelectricity is nearly degenerate with antiferroelectricity, a relatively rare form of ferroic order. We show that epitaxial strain plays a key role in tuning the "perpendicular coherence length" of the ferroelectric mode, and does not induce ferroelectricity in these low-dimensional RP materials as is well known to occur in SrTiO(3). These systems present an opportunity to manipulate the coherence length of a ferroic distortion in a controlled way, without disorder or a free surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA