Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893643

RESUMEN

The evaluation of mammographic breast density, a critical indicator of breast cancer risk, is traditionally performed by radiologists via visual inspection of mammography images, utilizing the Breast Imaging-Reporting and Data System (BI-RADS) breast density categories. However, this method is subject to substantial interobserver variability, leading to inconsistencies and potential inaccuracies in density assessment and subsequent risk estimations. To address this, we present a deep learning-based automatic detection algorithm (DLAD) designed for the automated evaluation of breast density. Our multicentric, multi-reader study leverages a diverse dataset of 122 full-field digital mammography studies (488 images in CC and MLO projections) sourced from three institutions. We invited two experienced radiologists to conduct a retrospective analysis, establishing a ground truth for 72 mammography studies (BI-RADS class A: 18, BI-RADS class B: 43, BI-RADS class C: 7, BI-RADS class D: 4). The efficacy of the DLAD was then compared to the performance of five independent radiologists with varying levels of experience. The DLAD showed robust performance, achieving an accuracy of 0.819 (95% CI: 0.736-0.903), along with an F1 score of 0.798 (0.594-0.905), precision of 0.806 (0.596-0.896), recall of 0.830 (0.650-0.946), and a Cohen's Kappa (κ) of 0.708 (0.562-0.841). The algorithm achieved robust performance that matches and in four cases exceeds that of individual radiologists. The statistical analysis did not reveal a significant difference in accuracy between DLAD and the radiologists, underscoring the model's competitive diagnostic alignment with professional radiologist assessments. These results demonstrate that the deep learning-based automatic detection algorithm can enhance the accuracy and consistency of breast density assessments, offering a reliable tool for improving breast cancer screening outcomes.

2.
Diagnostics (Basel) ; 13(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980351

RESUMEN

Chest X-ray (CXR) is considered to be the most widely used modality for detecting and monitoring various thoracic findings, including lung carcinoma and other pulmonary lesions. However, X-ray imaging shows particular limitations when detecting primary and secondary tumors and is prone to reading errors due to limited resolution and disagreement between radiologists. To address these issues, we developed a deep-learning-based automatic detection algorithm (DLAD) to automatically detect and localize suspicious lesions on CXRs. Five radiologists were invited to retrospectively evaluate 300 CXR images from a specialized oncology center, and the performance of individual radiologists was subsequently compared with that of DLAD. The proposed DLAD achieved significantly higher sensitivity (0.910 (0.854-0.966)) than that of all assessed radiologists (RAD 10.290 (0.201-0.379), p < 0.001, RAD 20.450 (0.352-0.548), p < 0.001, RAD 30.670 (0.578-0.762), p < 0.001, RAD 40.810 (0.733-0.887), p = 0.025, RAD 50.700 (0.610-0.790), p < 0.001). The DLAD specificity (0.775 (0.717-0.833)) was significantly lower than for all assessed radiologists (RAD 11.000 (0.984-1.000), p < 0.001, RAD 20.970 (0.946-1.000), p < 0.001, RAD 30.980 (0.961-1.000), p < 0.001, RAD 40.975 (0.953-0.997), p < 0.001, RAD 50.995 (0.985-1.000), p < 0.001). The study results demonstrate that the proposed DLAD could be utilized as a decision-support system to reduce radiologists' false negative rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA