Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 5): 368-379, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669151

RESUMEN

This paper reports an investigation of the chemistry, crystal structure refinement and thermal behavior (80-1650 K) of ludwigite from the Iten'yurginskoe deposit (Eastern Chukotka, Russia). Its chemical composition was determined by electron microprobe analysis, giving an empirical formula (Mg1.70Fe2+0.29Mn0.01)Σ2.00(Fe3+0.90Al0.08Mg0.02)Σ1.00O2(BO3). A refinement of the crystal structure from single-crystal X-ray diffraction data (SCXRD) was provided for the first time for ludwigite from this deposit (R = 0.047). The structure can be described as a framework composed of [MO6]n- octahedra and isolated [BO3]3- triangles located in triangular interstices of the framework. Based on a comprehensive analysis of SCXRD and Mössbauer spectroscopy data, the M1 site is occupied by Mg, M2 and M3 by Mg and Fe2+, M4 by Fe3+, Mg and Al. There are also oxo-centered [O4M4]n+ and [O2M5]n+ polyhedra building up a framework with the [BO3]3- triangles located in its hexagonal interstices. No indications of magnetic ordering are found in the temperature range investigated. The Fe2+ → Fe3+ oxidation occurs above 600 K, and is accompanied by a decrease of the unit-cell parameters and subsequent incomplete solid-phase decomposition with the formation of hematite, warwickite and magnetite. The mineral melts at temperatures above 1582 K. The thermal expansion of ludwigite is slightly anisotropic, which is explained by a dense packing of the [MO6]n- octahedra as well as a virtually perpendicular orientation of the oxo-centered double chains to each other. At room temperature, maximum expansion is along the c axis (αc = 9.1 × 10-6 K-1) and minimum expansion is in the ab plane (αa = 8.6 × 10-6, αb = 7.6 × 10-6 K-1), which is due to the preferred orientation of the [BO3]3- triangles. A comparison of the thermal behavior of three oxoborates of the ludwigite group, namely azoproite (Mg,Fe2+)2(Fe3+,Ti,Mg,Al)O2(BO3), vonsenite (Fe2+,Mg)2(Fe3+,Mn2+,Sn,Al)O2(BO3) and ludwigite (Mg,Fe2+,Mn)2(Fe3+,Al,Mg)O2(BO3), is provided.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 543-553, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831273

RESUMEN

The investigation of elemental composition, crystal structure and thermal behavior of vonsenite and hulsite from the Titovskoe boron deposit in Russia is reported. The structures of the borates are described in terms of cation-centered and oxocentred polyhedra. There are different sequences of double chains and layers consisting of oxocentred [OM4]n+ tetrahedra and [OM5]n+ tetragonal pyramids forming a framework. Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDX). Oxidation states and coordination sites of iron and tin in the oxoborates are determined using Mössbauer spectroscopy and compared with EDX and X-ray diffraction data (XRD). According to results obtained from high-temperature Mössbauer spectroscopy, the Fe2+ to Fe3+ oxidation in vonsenite and hulsite occurs at approximately 500 and 600 K, respectively. According to the high-temperature XRD data, this process is accompanied by an assumed deformation of crystal structures and subsequent solid-phase decomposition to hematite and warwickite. It is seen as a monotonic decrease of volume thermal expansion coefficients with an increase in temperature. A partial magnetic ordering in hulsite is observed for the first time with Tc ≃ 383 K. Near this temperature, an unusual change of thermal expansion coefficients is revealed. Vonsenite starts to melt at 1571 K and hulsite melts at 1504 K. Eigenvalues of thermal expansion tensor are calculated for the oxoborates as well as anisotropy of the expansion is described in comparison with their crystal structures.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 4): 697-703, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830725

RESUMEN

Single crystals of Lu5Ba6B9O27 were obtained by cooling from a melt and polycrystals of the borate were prepared using a multi-step solid-state synthesis. The crystal structure was determined from single-crystal X-ray diffraction data. The borate crystallizes in a new structure type in the monoclinic crystal system in space group C2/c, with cell parameters a = 13.0927 (3), b = 9.9970 (2) and c = 20.4884 (4) Å, ß = 106.827 (1)°, V = 2566.86 (9) Å3 and Z = 4. It is described as a framework composed of rings consisting of vertex-sharing [BO3] triangles and [LuO6] octahedra. The Ba atoms are in the cavities of the framework. The structure is disordered: one of the B atoms is surrounded by six O atoms with partial occupancies of 0.5. The thermal properties of Lu5Ba6B9O27 were investigated by thermal analysis and high-temperature X-ray powder diffraction. Its thermal expansion is highly anisotropic. The negative expansion (contraction) is along the b axis, i.e. parallel to the planes of the largest number of [BO3] triangles. The coefficient of negative linear expansion ranges from -1.42 (at 20°C) to -5.57 × 10-6 °C-1 (at 1000°C). Thermal deformation of the ac plane is described in terms of the theory of shear deformation of monoclinic crystals. The Lu5Ba6B9O27 sample melts at 1170°C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA