Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37534494

RESUMEN

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Asunto(s)
Síndrome Metabólico , Ratas , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Glucemia/análisis , Glucemia/metabolismo , Lysimachia , Fructosa , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fenotipo , Aminoácidos/metabolismo , Progresión de la Enfermedad , Candida/metabolismo
2.
Mini Rev Med Chem ; 21(8): 1025-1032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33319657

RESUMEN

In drug discovery, in silico methods have become a very important part of the process. These approaches impact the entire development process by discovering and identifying new target proteins as well as designing potential ligands with a significant reduction of time and cost. Furthermore, in silico approaches are also preferred because of reduction in the experimental use of animals as; in vivo testing for safer drug design and repositioning of known drugs. Novel software-based discovery and development such as direct/indirect drug design, molecular modelling, docking, screening, drug-receptor interaction, and molecular simulation studies are very important tools for the predictions of ligand-target interaction pattern, pharmacodynamics as well as pharmacokinetic properties of ligands. On the other part, the computational approaches can be numerous, requiring interdisciplinary studies and the application of advanced computer technology to design effective and commercially feasible drugs. This review mainly focuses on the various databases and software used in drug design and development to speed up the process.


Asunto(s)
Bases de Datos Farmacéuticas , Desarrollo de Medicamentos , Programas Informáticos , Animales , Humanos
3.
Front Pharmacol ; 12: 653872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935766

RESUMEN

Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.

4.
Pak J Biol Sci ; 23(10): 1231-1236, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32981255

RESUMEN

Microbes play a vital role in ecosystem stability. Here, microbes-Acacia association is discussed with particular reference to Arbuscular Mycorrhizal Fungi (AMF) which help in the establishment of crop-plants, especially in arid and semi-arid areas. The association helps to restore the structural composition of soil from the hazardous impact of agrochemicals, increase resistance against various pathogenic attack as well as several abiotic stresses. Further, a comparative account of microbes found in the rhizosphere of Acacia is illustrated. Among these, Rhizobia, Acetobacter, Bradyrhizobium, Bacillus, Pseudomonas and Trichoderma were described in detail. All these microbes can be regarded as Plant Growth Promoting Rhizospheric Microbes (PGPM), some of PGPM are Phosphate Solubilizing Microbe (PSM). Both of them help AMF for infecting mycorrhizal hyphae inside the plant cell. Overall, microbes can be used as biofertilizers along with other organic compounds, that can compensate for the nutrient's availability.


Asunto(s)
Acacia/crecimiento & desarrollo , Acacia/microbiología , Ecosistema , Micorrizas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Agricultura/métodos , Biodiversidad , Fertilizantes , Hongos , Nitrógeno , Fósforo , Suelo/química , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA