Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 28(Pt 1): 322-326, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399584

RESUMEN

The temporal resolution of X-ray tomography, using a synchrotron radiation X-ray source, has been improved to millisecond order in recent years. However, the sample must be rotated at a speed of more than a few thousand revolutions per minute, which makes it difficult to control the environment around the sample. In this study, a high-speed rotation device has been developed, comprising two synchronized coaxial motors movable along the direction of the axis, which can stretch or compress the rotating sample. Using this device, tomograms of breaking rubber were successfully obtained at a temporal resolution of 10 ms.


Asunto(s)
Tomografía por Rayos X/instrumentación , Diseño de Equipo , Rotación , Sincrotrones
2.
ACS Macro Lett ; 13(7): 847-852, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38916259

RESUMEN

The strain dependence of the Johari-Goldstein (JG)-ß relaxation time, as well as the directional dependence, was systematically investigated for stretched cross-linked polybutadiene using time-domain interferometry. We found that the strain dependence of the JG-ß relaxation time is directionally dependent, contrary to expectation: the relaxation time of the JG-ß motion, whose displacement is perpendicular to the stretching direction, decreases with stretching, whereas the relaxation time of the parallel JG-ß motion changes little. This result is distinct from the previously reported strain dependence of the α relaxation time, where the relaxation time increases isotropically with stretching. Thus, the difference in the strain dependence of the relaxation time between the α and JG-ß processes suggests a microscopic origin and requires the modification of the conventional dynamic picture for stretched polymers.

3.
Sci Rep ; 13(1): 5805, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037865

RESUMEN

Notwithstanding the various uses of rubber, the fracture mechanism of filler-reinforced rubber remains unclear. This study used four-dimensional computed tomography (4D-CT) involving monochromatic synchrotron X-rays to examine the cavitation within silica-reinforced rubber quantitatively and systematically. The results suggested a threshold value of silica content for the cavitation morphology. Macroscopic fractures, such as those developed by void formation, occurred below the threshold value of silica content. Above this threshold, the density of rubber decreased but macroscopic voids rarely occurred. The lower-density rubber area in the high-silica-content rubber was reversible at the effective pixel size for 4D-CT. These results suggest that the growth of the damage points to macrosized voids could be stopped by the formation of a network of rigid polymer layers. This study allows the elucidation of the reinforcing mechanism and the cavitation morphology of filler-reinforced rubber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA