RESUMEN
BACKGROUND: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables. Key metabolites include lipids, phenolics, and a wide range of volatile organic compounds (VOCs), which provide the olives and oil with their characteristic flavor. Here we aim to identify markers that are able to discriminate between cultivars, that can identify growth location, and can discriminate stages of fruit maturity. 'Nocellara messinese' and 'Carolea' olive fruits were grown at three locations differing in altitude in Calabria, Italy, and harvested at three stages of maturity. Oil was analyzed from the two most mature stages. RESULTS: Nine and 20 characters discriminated all fruit and oil samples respectively, and relative abundance of two fatty acids distinguished all oils. Whole VOC profiles discriminated among the least mature olives, and oil VOC profiles discriminated location and cultivar at both stages. Three VOCs putatively identified as hexanal, methyl acetate, and 3-hexen-1-ol differentiated all samples of oils from the most mature fruit stage. CONCLUSION: The results confirm that interactions of location, cultivar and fruit maturity stage are critical for the overall pattern of aroma compounds, and identify potential markers of commercial relevance. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Olea , Compuestos Orgánicos Volátiles , Frutas/química , Olea/química , Aceite de Oliva/química , Fenoles/análisis , Compuestos Orgánicos Volátiles/químicaRESUMEN
In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 interacting partner 1 (SKIP1). Furthermore, the AtWEE1-green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1-YFP(C) (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1-YFP(N) negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome.
Asunto(s)
Ciclo Celular/fisiología , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Mitosis , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/citología , Nicotiana/enzimologíaRESUMEN
BACKGROUND AND AIMS: How plant cell-cycle genes interface with development is unclear. Preliminary evidence from our laboratory suggested that over-expression of the cell cycle checkpoint gene, WEE1, repressed growth and development. Here the hypothesis is tested that the level of WEE1 has a dosage effect on growth and development in Arabidospis thaliana. To do this, a comparison was made of the development of gain- and loss-of-function WEE1 arabidopsis lines both in vivo and in vitro. METHODS: Hypocotyl explants from an over-expressing Arath;WEE1 line (WEE1(oe)), two T-DNA insertion lines (wee1-1 and wee1-4) and wild type (WT) were cultured on two-way combinations of kinetin and naphthyl acetic acid. Root growth and meristematic cell size were also examined. KEY RESULTS: Quantitative data indicated a repressive effect in WEE1(oe) and a significant increase in morphogenetic capacity in the two T-DNA insertion lines compared with WT. Compared with WT, WEE1(oe) seedlings exhibited a slower cell-doubling time in the root apical meristem and a shortened primary root, with fewer laterals, whereas there were no consistent differences in the insertion lines compared with WT. However, significantly fewer adventitious roots were recorded for WEE1(oe) and significantly more for the insertion mutant wee1-1. Compared with WT there was a significant increase in meristem cell size in WEE1(oe) for all three ground tissues but for wee1-1 only cortical cell size was reduced. CONCLUSIONS: There is a gene dosage effect of WEE1 on morphogenesis from hypocotyls both in vitro and in vivo.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclo Celular/genética , Dosificación de Gen , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Recuento de Células , Tamaño de la Célula , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Cinetina/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Mutagénesis Insercional , Naftoles/farmacología , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Técnicas de Cultivo de TejidosRESUMEN
BACKGROUND AND AIMS: In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested. Methods arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes Key RESULTS: There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl. CONCLUSIONS: Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Bleomicina/farmacología , ADN Bacteriano/genética , Hidroxiurea/farmacología , Complejos Multienzimáticos/metabolismo , Mutagénesis Insercional/genética , Oxidorreductasas/metabolismo , Cloruro de Sodio/farmacología , Fosfatasas cdc25/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Complejos Multienzimáticos/genética , Mutagénesis Insercional/efectos de los fármacos , Oxidorreductasas/genética , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fosfatasas cdc25/genéticaRESUMEN
In this investigation, we assessed the effects of Cu and/or Cd excess on physiological and metabolic processes of the widespread seagrass Zostera marina. Adult were exposed to low Cd and Cu (0.89 and 0.8⯵M, respectively) and high Cd and Cu (8.9 and 2.4⯵M, respectively) for 6â¯dâ¯at: Control conditions; low Cu; high Cu; low Cd; high Cd; low Cd and low Cu; and high Cd and high Cu. Photosynthetic performance decreased under single and combined treatments, although effects were more negative under Cu than Cd. Total Cu accumulation was higher than Cd, under single and combined treatments; however, their accumulation was generally lower when applied together, suggesting competition among them. Levels of glutathione (GSH) and phytochelatins (PCs) followed patterns similar to metal accumulation, with up to PC5, displaying adaptations in tolerance. A metallothionein (MET) gene showed upregulation only at high Cd, low Cu, and high Cu. The expression of the enzymes glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) was greatest at high Cu, and at high Cd and Cu together; the highest expression was under Cu, alone and combined. Both metals induced upregulation of the DNA methyltransferases CMT3 and DRM2, with the highest expression at single Cu. The DNA demethylation ROS1 was overexpressed in treatments containing high Cu, suggesting epigenetic modifications. The results show that under copper and/or cadmium, Z. marina was still biologically viable; certainly based, at least in part, on the induction of metal chelators, antioxidant defences and methylation/demethylation pathways of gene regulation.
Asunto(s)
Antioxidantes/metabolismo , Cadmio/farmacología , Cobre/farmacología , Metilación de ADN/efectos de los fármacos , Metales/metabolismo , Fitoquelatinas/metabolismo , Zosteraceae/efectos de los fármacos , Redes Reguladoras de Genes , Zosteraceae/enzimología , Zosteraceae/metabolismoRESUMEN
WEE1 regulates the cell cycle by inactivating cyclin dependent protein kinases (CDKs) via phosphorylation. In yeast and animal cells, CDC25 phosphatase dephosphorylates the CDK releasing cells into mitosis, but in plants, its role is less clear. Expression of fission yeast CDC25 (Spcdc25) in tobacco results in small cell size, premature flowering and increased shoot morphogenetic capacity in culture. When Arath;WEE1 is over-expressed in Arabidopsis, root apical meristem cell size increases, and morphogenetic capacity of cultured hypocotyls is reduced. However expression of Arath;WEE1 in tobacco plants resulted in precocious flowering and increased shoot morphogenesis of stem explants, and in BY2 cultures cell size was reduced. This phenotype is similar to expression of Spcdc25 and is consistent with a dominant negative effect on WEE1 action. Consistent with this putative mechanism, WEE1 protein levels fell and CDKB levels rose prematurely, coinciding with early mitosis. The phenotype is not due to sense-mediated silencing of WEE1, as overall levels of WEE1 transcript were not reduced in BY2 lines expressing Arath;WEE1. However the pattern of native WEE1 transcript accumulation through the cell cycle was altered by Arath;WEE1 expression, suggesting feedback inhibition of native WEE1 transcription.