Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(47): 11958-11963, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397129

RESUMEN

Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Catálisis , Coenzimas , Cristalografía por Rayos X/métodos , Células Eucariotas/metabolismo , Humanos , Metaloproteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Molibdeno/metabolismo , Cofactores de Molibdeno , Oxidación-Reducción , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Pteridinas
2.
Plant Cell ; 28(5): 1108-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152019

RESUMEN

While plants produce reactive oxygen species (ROS) for stress signaling and pathogen defense, they need to remove excessive ROS induced during stress responses in order to minimize oxidative damage. How can plants fine-tune this balance and meet such conflicting needs? Here, we show that XANTHINE DEHYDROGENASE1 (XDH1) in Arabidopsis thaliana appears to play spatially opposite roles to serve this purpose. Through a large-scale genetic screen, we identified three missense mutations in XDH1 that impair XDH1's enzymatic functions and consequently affect the powdery mildew resistance mediated by RESISTANCE TO POWDERY MILDEW8 (RPW8) in epidermal cells and formation of xanthine-enriched autofluorescent objects in mesophyll cells. Further analyses revealed that in leaf epidermal cells, XDH1 likely functions as an oxidase, along with the NADPH oxidases RbohD and RbohF, to generate superoxide, which is dismutated into H2O2 The resulting enrichment of H2O2 in the fungal haustorial complex within infected epidermal cells helps to constrain the haustorium, thereby contributing to RPW8-dependent and RPW8-independent powdery mildew resistance. By contrast, in leaf mesophyll cells, XDH1 carries out xanthine dehydrogenase activity to produce uric acid in local and systemic tissues to scavenge H2O2 from stressed chloroplasts, thereby protecting plants from stress-induced oxidative damage. Thus, XDH1 plays spatially specified dual and opposing roles in modulation of ROS metabolism during defense responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Xantina Deshidrogenasa/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Xantina Deshidrogenasa/genética
3.
Chem Res Toxicol ; 31(6): 447-453, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29856598

RESUMEN

Although known for years, the toxic effects of trimethylamine N-oxide (TMAO), a physiological metabolite, were just recently discovered and are currently under investigation. It is known that elevated TMAO plasma levels correlate with an elevated risk for cardiovascular disease (CVD). Even though there is a general consensus about the existence of a causal relationship between TMAO and CVD, the underlying mechanisms are not fully understood. TMAO is an oxidation product of the hepatic flavin-containing monooxygenases (FMO), mainly of isoform 3, and it is conceivable that humans also have an enzyme reversing this toxification by reducing TMAO to its precursor trimethylamine (TMA). All prokaryotic enzymes that use TMAO as a substrate have molybdenum-containing cofactors in common. Such molybdenum-containing enzymes also exist in mammals, with the so-called mitochondrial amidoxime reducing component (mARC) representing the most recently discovered mammalian molybdenum enzyme. The enzyme has been found to exist in two isoforms, mARC1 and mARC2, both being capable of reducing a variety of N-oxygenated compounds, including nonphysiological N-oxides. To investigate whether the two isoforms of this enzyme are able to reduce and detoxify TMAO, we developed a suitable analytical method and tested TMAO reduction with a recombinant enzyme system. We found that one of the two recombinant human mARC proteins, namely, hmARC1, reduces TMAO to TMA. The N-reductive activity is relatively low and identified via the kinetic parameters with Km = (30.4 ± 9.8) mM and Vmax = (100.5 ± 12.2) nmol/(mg protein·min). Nevertheless, the ubiquitous tissue expression of hmARC1 allows a continuous reduction of TMAO whereas the counter-reaction, the production of TMAO through FMO3, can take place only in the liver where FMO3 is expressed. TMAO reduction in porcine liver subfractions showed the characteristic enrichment of N-reductive activity in the outer mitochondrial membrane. TMAO reduction was also found in human cell cultures. These findings indicate the role of hmARC1 in the metabolomic pathway of TMAO, which might contribute to the prevention of CVD. This also hints at a physiological function of the molybdenum enzyme, which remains mainly unknown to date.


Asunto(s)
Metilaminas/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Inactivación Metabólica , Hígado/metabolismo , Metilaminas/química , Mitocondrias/metabolismo , Oxidación-Reducción , Porcinos
4.
Plant Cell Physiol ; 58(8): 1421-1430, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633475

RESUMEN

The most prominent alkaloid of Chelidonium majus is dihydrocoptisine, revealing the characteristic benzophenanthridine skeleton. To date, any informationon on the enzymes responsible for its biosynthesis and the related genes in C. majus is lacking. Based on sequence similarities to the corresponding methylenedioxy bridge-forming Cyt P450 enzymes involved in isoquinoline alkaloid biosynthesis in Eschscholzia californica, genes for a cheilanthifoline synthase and a stylopine synthase from C. majus were isolated, sequenced and heterologously expressed in yeast. The activity of the heterologously expressed Cyt P450 enzymes was determined in situ as well as on the basis of microsomal fractions. It was shown that cheilanthifoline synthase (c8931) converts scoulerine into cheilanthifoline, the latter subsequently being converted to stylopine by the action of a stylopine synthase (c1128). Based on the well-known instability of stylopine, it can be assumed that in vivo-under the acidic conditions in the vacuole-this alkaloid is converted to dihydrocoptisine, which accumulates in C. majus leaves. Both methylenedioxy bridge-forming Cyt P450 enzymes from C. majus are characterized by their high substrate specificity. Apart from their genuine substrates, i.e. scoulerine and cheilanthifoline, cheilanthifoline synthase and stylopine synthase do not accept other substrates tested; the only alternative substrate identified was scoulerine, which is converted by stylopine synthase to yield minor amounts of nandinine. Quantitative real-time PCR revealed that the expression of cheilanthifoline synthase and stylopine synthase genes is very similar in both roots and leaves from C. majus, although the alkaloid accumulation patterns in these organs are quite different.


Asunto(s)
Alcaloides/metabolismo , Chelidonium/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Isoquinolinas/metabolismo , Proteínas de Plantas/genética , Alcaloides de Berberina/metabolismo , Chelidonium/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
5.
New Phytol ; 213(3): 1222-1241, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27735062

RESUMEN

Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.


Asunto(s)
Cucumis sativus/metabolismo , Homeostasis/efectos de los fármacos , Hierro/farmacología , Molibdeno/farmacología , Análisis por Conglomerados , Coenzimas/metabolismo , Cucumis sativus/efectos de los fármacos , Formiato Deshidrogenasas/metabolismo , Metaboloma/efectos de los fármacos , Metaloproteínas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Cofactores de Molibdeno , Oxidorreductasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Proteoma/metabolismo , Pteridinas/metabolismo
6.
Drug Metab Dispos ; 44(10): 1617-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27469001

RESUMEN

The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.


Asunto(s)
Citocromo-B(5) Reductasa/metabolismo , Mitocondrias/enzimología , NAD/metabolismo , Oximas/metabolismo , Células HEK293 , Humanos
7.
J Am Chem Soc ; 137(16): 5276-9, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25897643

RESUMEN

A combination of electron paramagnetic resonance (EPR) spectroscopy and computational approaches has provided insight into the nature of the reaction coordinate for the one-electron reduction of nitrite by the mitochondrial amidoxime reducing component (mARC) enzyme. The results show that a paramagnetic Mo(V) species is generated when reduced enzyme is exposed to nitrite, and an analysis of the resulting EPR hyperfine parameters confirms that mARC is remarkably similar to the low-pH form of sulfite oxidase. Two mechanisms for nitrite reduction have been considered. The first shows a modest reaction barrier of 14 kcal/mol for the formation of ·NO from unprotonated nitrite substrate. In marked contrast, protonation of the substrate oxygen proximal to Mo in the Mo(IV)-O-N-O substrate-bound species results in barrierless conversion to products. A fragment orbital analysis reveals a high degree of Mo-O(H)-N-O covalency that provides a π-orbital pathway for one-electron transfer to the substrate and defines orbital constraints on the Mo-substrate geometry for productive catalysis in mARC and other pyranopterin molybdenum enzymes that catalyze this one-electron transformation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Radical Hidroxilo/metabolismo , Mitocondrias/enzimología , Nitritos/metabolismo , Oxidorreductasas/metabolismo , Arabidopsis/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón , Mitocondrias/metabolismo , Modelos Moleculares , Molibdeno/química , Molibdeno/metabolismo , Oxidación-Reducción , Sulfito-Oxidasa/metabolismo
8.
J Biol Chem ; 288(28): 20228-37, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23703616

RESUMEN

The mitochondrial amidoxime reducing component mARC is a recently discovered molybdenum enzyme in mammals. mARC is not active as a standalone protein, but together with the electron transport proteins NADH-cytochrome b5 reductase (CYB5R) and cytochrome b5 (CYB5), it catalyzes the reduction of N-hydroxylated compounds such as amidoximes. The mARC-containing enzyme system is therefore considered to be responsible for the activation of amidoxime prodrugs. All hitherto analyzed mammalian genomes code for two mARC genes (also referred to as MOSC1 and MOSC2), which share high sequence similarities. By RNAi experiments in two different human cell lines, we demonstrate for the first time that both mARC proteins are capable of reducing N-hydroxylated substrates in cell metabolism. The extent of involvement is highly dependent on the expression level of the particular mARC protein. Furthermore, the mitochondrial isoform of CYB5 (CYB5B) is clearly identified as an essential component of the mARC-containing N-reductase system in human cells. The participation of the microsomal isoform (CYB5A) in N-reduction could be excluded by siRNA-mediated down-regulation in HEK-293 cells and knock-out in mice. Using heme-free apo-CYB5, the contribution of mitochondrial CYB5 to N-reductive catalysis was proven to strictly depend on heme. Finally, we created recombinant CYB5B variants corresponding to four nonsynonymous single nucleotide polymorphisms (SNPs). Investigated mutations of the heme protein seemed to have no significant impact on N-reductive activity of the reconstituted enzyme system.


Asunto(s)
Citocromos b5/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Oximas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Molibdeno/metabolismo , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN
9.
Drug Metab Dispos ; 42(4): 718-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423752

RESUMEN

Human molybdenum-containing enzyme mitochondrial amidoxime reducing component (mARC), cytochrome b5 type B, and NADH cytochrome b5 reductase form an N-reductive enzyme system that is capable of reducing N-hydroxylated compounds. Genetic variations are known, but their functional relevance is unclear. Our study aimed to investigate the incidence of nonsynonymous single nucleotide polymorphisms (SNPs) in the mARC genes in healthy Caucasian volunteers, to determine saturation of the protein variants with molybdenum cofactor (Moco), and to characterize the kinetic behavior of the protein variants by in vitro biotransformation studies. Genotype frequencies of six SNPs in the mARC genes (c.493A>G, c.560T>A, c.736T>A, and c.739G>C in MARC1; c.730G>A and c.735T>G in MARC2) were determined by pyrosequencing in a cohort of 340 healthy Caucasians. Protein variants were expressed in Escherichia coli. Saturation with Moco was determined by measurement of molybdenum by inductively coupled mass spectrometry. Steady state assays were performed with benzamidoxime. The six variants were of low frequency in this Caucasian population. Only one homozygous variant (c.493A; MARC1) was detected. All protein variants were able to bind Moco. Steady state assays showed statistically significant decreases of catalytic efficiency values for the mARC-2 wild type compared with the mARC-1 wild type (P < 0.05) and for two mARC-2 variants compared with the mARC-2 wild type (G244S, P < 0.05; C245W, P < 0.05). After simultaneous substitution of more than two amino acids in the mARC-1 protein, N-reductive activity was decreased 5-fold. One homozygous variant of MARC1 was detected in our sample. The encoded protein variant (A165T) showed no different kinetic parameters in the N-reduction of benzamidoxime.


Asunto(s)
Coenzimas/metabolismo , Metaloproteínas/metabolismo , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Polimorfismo de Nucleótido Simple , Pteridinas/metabolismo , Adulto , Anciano , Benzamidinas/metabolismo , Biotransformación , Catálisis , Escherichia coli/genética , Femenino , Frecuencia de los Genes , Voluntarios Sanos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Cofactores de Molibdeno , Unión Proteica , Población Blanca
10.
Chem Res Toxicol ; 27(10): 1687-95, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25170804

RESUMEN

Under high dose treatment with sulfamethoxazole (SMX)/trimethoprim (TMP), hypersensitivity reactions occur with a high incidence. The mechanism of this adverse drug reaction is not fully understood. Several steps in the toxification pathway of SMX were investigated. The aim of our study was to investigate the reduction of sulfamethoxazole hydroxylamine (SMX-HA) in this toxification pathway, which can possibly be catalyzed by the mARC-containing N-reductive enzyme system. Western blot analyses of subcellular fractions of porcine tissue were performed with antibodies against mARC-1, mARC-2, cytochrome b5 type B, and NADH cytochrome b5 reductase. Incubations of porcine and human subcellular tissue fractions and of the heterologously expressed human components of the N-reductive enzyme system were carried out with SMX-HA. mARC-1 and mARC-2 knockdown was performed in HEK-293 cells. Kinetic parameters of the heterologously expressed human protein variants V96L, A165T, M187 K, C246S, D247H, and M268I of mARC-1 and G244S and C245W of mARC-2 and N-reductive activity of 2SF, D14G, K16E, and T22A of cytochrome b5 type B were analyzed. Western blot analyses were consistent with the hypothesis that the mARC-containing N-reductive enzyme system might be involved in the reduction of SMX-HA. In agreement with these results, highest reduction rates were found in mitochondrial subcellular fractions of porcine tissue and in the outer membrane vesicle (OMV) of human liver tissue. Knockdown studies in HEK-293 cells demonstrated that mARC-1 and mARC-2 were capable of reducing SMX-HA in cell metabolism. Investigations with the heterologously expressed human mARC-2 protein showed a higher catalytic efficiency toward SMX-HA than mARC-1, but none of the investigated human protein variants showed statistically significant differences of its N-reductive activity and was therefore likely to participate in the pathogenesis of hypersensitivity reaction under treatment with SMX.


Asunto(s)
Mitocondrias/metabolismo , Sulfametoxazol/análogos & derivados , Sustitución de Aminoácidos , Animales , Biocatálisis , Cromatografía Líquida de Alta Presión , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Células HEK293 , Humanos , Cinética , Hígado/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Porcinos
11.
Inorg Chem ; 53(18): 9460-2, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166909

RESUMEN

Mo K-edge X-ray absorption spectroscopy has been used to probe as-isolated structures of the MOSC family proteins pmARC-1 and HMCS-CT. The Mo K-edge near-edge spectrum of HMCS-CT is shifted ~2.5 eV to lower energy compared to the pmARC-1 spectrum, which indicates that as-isolated HMCS-CT is in a more reduced state than pmARC-1. Extended X-ray absorption fine structure analysis indicates significant structural differences between pmARC-1 and HMCS-CT, with the former being a dioxo site and the latter possessing only a single terminal oxo ligand. The number of terminal oxo donors is consistent with pmARC-1 being in the Mo(VI) oxidation state and HMCS-CT in the Mo(IV) state. These structures are in accord with oxygen-atom-transfer reactivity for pmARC-1 and persulfide bond cleavage chemistry for HMCS-CT.


Asunto(s)
Molibdeno/química , Oxidorreductasas/química , Humanos , Oxidación-Reducción , Conformación Proteica , Espectroscopía de Absorción de Rayos X
12.
J Biol Chem ; 287(7): 4671-8, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22194618

RESUMEN

l-Cysteine desulfurases provide sulfur to several metabolic pathways in the form of persulfides on specific cysteine residues of an acceptor protein for the eventual incorporation of sulfur into an end product. IscS is one of the three Escherichia coli l-cysteine desulfurases. It interacts with FdhD, a protein essential for the activity of formate dehydrogenases (FDHs), which are iron/molybdenum/selenium-containing enzymes. Here, we address the role played by this interaction in the activity of FDH-H (FdhF) in E. coli. The interaction of IscS with FdhD results in a sulfur transfer between IscS and FdhD in the form of persulfides. Substitution of the strictly conserved residue Cys-121 of FdhD impairs both sulfur transfer from IscS to FdhD and FdhF activity. Furthermore, inactive FdhF produced in the absence of FdhD contains both metal centers, albeit the molybdenum cofactor is at a reduced level. Finally, FdhF activity is sulfur-dependent, as it shows reversible sensitivity to cyanide treatment. Conclusively, FdhD is a sulfurtransferase between IscS and FdhF and is thereby essential to yield FDH activity.


Asunto(s)
Liasas de Carbono-Azufre/química , Escherichia coli/enzimología , Formiato Deshidrogenasas/química , Liasas de Carbono-Azufre/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Formiato Deshidrogenasas/metabolismo , Hierro/química , Hierro/metabolismo , Molibdeno/química , Molibdeno/metabolismo , Selenio/química , Selenio/metabolismo , Azufre/química , Azufre/metabolismo
13.
Plant Cell ; 22(2): 468-80, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20164445

RESUMEN

The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to approximately 50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , Mitocondrias/química , Transportadoras de Casetes de Unión a ATP/fisiología , Arabidopsis/genética , Sequías , Cofactores de Molibdeno , Mutación , Pteridinas
14.
Xenobiotica ; 43(9): 780-4, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23379481

RESUMEN

Upamostat (Mesupron®) is a new small molecule serine protease inhibitor. The drug candidate was developed to inhibit the urokinase-type plasminogen activator (uPA) system, which plays a major role in tumor invasion and metastasis. Upamostat is currently in clinical development as an anti-metastatic and non-cytotoxic agent against pancreatic and breast cancer. Upamostat is the orally available amidoxime- (i.e. hydroxyamidine-) prodrug of the pharmacologically active form, WX-UK1. In this study, the reductive enzymatic activation of upamostat to its corresponding amidine WX-UK1 was analyzed. The recently discovered molybdenum enzyme "mitochondrial Amidoxime Reducing Component" (mARC) catalyses together with its electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase the reduction of N-hydroxylated prodrugs. In vitro biotransformation assays with porcine subcellular fractions and the reconstituted human enzymes demonstrate an mARC-dependent N-reduction of upamostat.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Fenilalanina/análogos & derivados , Piperazinas/metabolismo , Sulfonamidas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Activación Enzimática , Humanos , Oxidación-Reducción , Oximas , Fenilalanina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Porcinos
15.
Biochem J ; 441(3): 823-32, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004669

RESUMEN

The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys4³°, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys4³°. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys²°6, was identified. Furthermore, the active-site Cys4³° was found to be located on top of a loop structure, formed by the two flanking residues Cys4²8 and Cys4³5, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys4²8 and Cys4³5 are within disulfide bond distance and that a persulfide transfer from Cys4³° to Cys²°6 is indeed possible.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas/química , Cisteína/aislamiento & purificación , Disulfuros/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Sulfuros/metabolismo , Sulfurtransferasas , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Coenzimas/química , Coenzimas/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Cofactores de Molibdeno , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Pteridinas/química , Pteridinas/metabolismo , Homología de Secuencia , Relación Estructura-Actividad , Sulfurtransferasas/química , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
16.
NAR Genom Bioinform ; 5(1): lqad010, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36814457

RESUMEN

RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention.

17.
Plant Mol Biol ; 80(6): 659-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23065119

RESUMEN

Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.


Asunto(s)
Aldehído Oxidasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Superóxidos/metabolismo , Aldehído Oxidasa/antagonistas & inhibidores , Aldehído Oxidasa/genética , Aldehídos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , NAD/metabolismo , Oxidación-Reducción , Pichia/enzimología , Pichia/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría
18.
Chem Res Toxicol ; 25(11): 2443-50, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-22924387

RESUMEN

The "mitochondrial Amidoxime Reducing Component" (mARC) is the newly discovered fourth molybdenum enzyme in mammals. All hitherto analyzed mammals express two mARC proteins, referred to as mARC1 and mARC2. Together with their electron transport proteins cytochrome b(5) and NADH cytochrome b(5) reductase, they form a three-component enzyme system and catalyze the reduction of N-hydroxylated prodrugs. Here, we demonstrate the reductive detoxification of toxic and mutagenic N-hydroxylated nucleobases and their corresponding nucleosides by the mammalian mARC-containing enzyme system. The N-reductive activity was found in all tested tissues with the highest detectable conversion rates in liver, kidney, thyroid, and pancreas. According to the presumed localization, the N-reductive activity is most pronounced in enriched mitochondrial fractions. In vitro assays with the respective recombinant three-component enzyme system show that both mARC isoforms are able to reduce N-hydroxylated base analogues, with mARC1 representing the more efficient isoform. On the basis of the high specific activities with N-hydroxylated base analogues relative to other N-hydroxylated substrates, our data suggest that mARC proteins might be involved in protecting cellular DNA from misincorporation of toxic N-hydroxylated base analogues during replication by converting them to the correct purine or pyrimidine bases, respectively.


Asunto(s)
Adenina/análogos & derivados , Citidina/análogos & derivados , Citosina/análogos & derivados , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Adenina/química , Adenina/metabolismo , Adenina/toxicidad , Biocatálisis , Citidina/química , Citidina/metabolismo , Citidina/toxicidad , Citosina/química , Citosina/metabolismo , Citosina/toxicidad , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/aislamiento & purificación , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
19.
Biochem J ; 433(2): 383-91, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21029045

RESUMEN

NOSs (nitric oxide synthases) catalyse the oxidation of L-arginine to L-citrulline and nitric oxide via the intermediate NOHA (N(ω)-hydroxy-L-arginine). This intermediate is rapidly converted further, but to a small extent can also be liberated from the active site of NOSs and act as a transportable precursor of nitric oxide or potent physiological inhibitor of arginases. Thus its formation is of enormous importance for the nitric-oxide-generating system. It has also been shown that NOHA is reduced by microsomes and mitochondria to L-arginine. In the present study, we show for the first time that both human isoforms of the newly identified mARC (mitochondrial amidoxime reducing component) enhance the rate of reduction of NOHA, in the presence of NADH cytochrome b5 reductase and cytochrome b5, by more than 500-fold. Consequently, these results provide the first hints that mARC might be involved in mitochondrial NOHA reduction and could be of physiological significance in affecting endogenous nitric oxide levels. Possibly, this reduction represents another regulative mechanism in the complex regulation of nitric oxide biosynthesis, considering a mitochondrial NOS has been identified. Moreover, this reduction is not restricted to NOHA since the analogous arginase inhibitor NHAM (N(ω)-hydroxy-N(δ)-methyl-L-arginine) is also reduced by this system.


Asunto(s)
Arginina/análogos & derivados , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Animales , Arginina/metabolismo , Benzamidinas , Células Hep G2 , Humanos , Oxidación-Reducción , Porcinos
20.
Proc Natl Acad Sci U S A ; 106(30): 12311-6, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19617542

RESUMEN

Selective 2-photon excitation (TPE) of carotenoid dark states, Car S(1), shows that in the major light-harvesting complex of photosystem II (LHCII), the extent of electronic interactions between carotenoid dark states (Car S(1)) and chlorophyll (Chl) states, phi(Coupling)(Car S(1)-Chl), correlates linearly with chlorophyll fluorescence quenching under different experimental conditions. Simultaneously, a linear correlation between both Chl fluorescence quenching and phi(Coupling)(Car S(1)-Chl) with the intensity of red-shifted bands in the Chl Q(y) and carotenoid absorption was also observed. These results suggest quenching excitonic Car S(1)-Chl states as origin for the observed effects. Furthermore, real time measurements of the light-dependent down- and up-regulation of the photosynthetic activity and phi(Coupling)(Car S(1)-Chl) in wild-type and mutant (npq1, npq2, npq4, lut2 and WT+PsbS) Arabidopsis thaliana plants reveal that also in vivo the quenching parameter NPQ correlates always linearly with the extent of electronic Car S(1)-Chl interactions in any adaptation status. Our in vivo measurements with Arabidopsis variants show that during high light illumination, phi(Coupling)(Car S(1)-Chl) depends on the presence of PsbS and zeaxanthin (Zea) in an almost identical way as NPQ. In summary, these results provide clear evidence for a very close link between electronic Car S(1)-Chl interactions and the regulation of photosynthesis. These findings support a photophysical mechanism in which short-living, low excitonic carotenoid-chlorophyll states serve as traps and dissipation valves for excess excitation energy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Carotenoides/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Carotenoides/química , Clorofila/química , Transferencia de Energía , Fluorescencia , Cinética , Luz , Modelos Biológicos , Fotones , Fotosíntesis/efectos de la radiación , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA