Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioessays ; 46(7): e2400058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724251

RESUMEN

The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN Mensajero , Código Genético/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas/genética , Animales , Codón de Terminación/genética , Núcleo Celular/genética , Evolución Molecular , Codón/genética , Eucariontes/genética
2.
Nucleic Acids Res ; 52(13): 7792-7808, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38874498

RESUMEN

The poly(A) tail plays an important role in maintaining mRNA stability and influences translation efficiency via binding with PABP. However, the impact of poly(A) tail length on mRNA translation remains incompletely understood. This study explores the effects of poly(A) tail length on human translation. We determined the translation rates in cell lysates using mRNAs with different poly(A) tails. Cap-dependent translation was stimulated by the poly(A) tail, however, it was largely independent of poly(A) tail length, with an exception observed in the case of the 75 nt poly(A) tail. Conversely, cap-independent translation displayed a positive correlation with poly(A) tail length. Examination of translation stages uncovered the dependence of initiation and termination on the presence of the poly(A) tail, but the efficiency of initiation remained unaffected by poly(A) tail extension. Further study unveiled that increased binding of eRFs to the ribosome with the poly(A) tail extension induced more efficient hydrolysis of peptidyl-tRNA. Building upon these findings, we propose a crucial role for the 75 nt poly(A) tail in orchestrating the formation of a double closed-loop mRNA structure within human cells which couples the initiation and termination phases of translation.


Asunto(s)
Poli A , Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Poli A/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional , Células HeLa , Caperuzas de ARN/metabolismo , Estabilidad del ARN
3.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063238

RESUMEN

Eukaryotic release factor eRF1, encoded by the ETF1 gene, recognizes stop codons and induces peptide release during translation termination. ETF1 produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied. Using a reconstituted mammalian in vitro translation system, we showed that the isoform 2 of human eRF1 is also involved in translation. We showed that eRF1iso2 can interact with the ribosomal subunits and pre-termination complex. However, its codon recognition and peptide release activities have decreased. Additionally, eRF1 isoform 2 exhibits unipotency to UGA. We found that eRF1 isoform 2 interacts with eRF3a but stimulated its GTPase activity significantly worse than the main isoform eRF1. Additionally, we studied the eRF1 isoform 2 effect on stop codon readthrough and translation in a cell-free translation system. We observed that eRF1 isoform 2 suppressed stop codon readthrough of the uORFs and decreased the efficiency of translation of long coding sequences. Based on these data, we assumed that human eRF1 isoform 2 can be involved in the regulation of translation termination. Moreover, our data support previously stated hypotheses that the GTS loop is important for the multipotency of eRF1 to all stop codons. Whereas helix α1 of the N-domain eRF1 is proposed to be involved in conformational rearrangements of eRF1 in the A-site of the ribosome that occur after GTP hydrolysis by eRF3, which ensure hydrolysis of peptidyl-tRNA at the P site of the ribosome.


Asunto(s)
Codón de Terminación , Factores de Terminación de Péptidos , Isoformas de Proteínas , Humanos , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Codón de Terminación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Terminación de la Cadena Péptídica Traduccional , Unión Proteica
4.
J Biol Chem ; 298(7): 102133, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700825

RESUMEN

The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3' contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3' stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3' nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3' nucleotides. Moreover, the efficiency of translation termination in weak 3' contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3' nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.


Asunto(s)
Nucleótidos , Biosíntesis de Proteínas , Animales , Codón de Terminación/genética , Codón de Terminación/metabolismo , Eucariontes/metabolismo , Humanos , Mamíferos/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
5.
Nucleic Acids Res ; 49(19): 11181-11196, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34591963

RESUMEN

eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions - binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Proteína I de Unión a Poli(A)/genética , Ribosomas/genética , Animales , Sistema Libre de Células , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Factores de Terminación de Péptidos/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulocitos/química , Reticulocitos/metabolismo , Ribosomas/metabolismo , Transducción de Señal
6.
J Biol Chem ; 297(5): 101269, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606825

RESUMEN

Programmed cell death 4 protein (PDCD4) regulates many vital cell processes, although is classified as a tumor suppressor because it inhibits neoplastic transformation and tumor growth. For example, PCDC4 has been implicated in the regulation of transcription and mRNA translation. PDCD4 is known to inhibit translation initiation by binding to eukaryotic initiation factor 4A and elongation of oncogenic c- and A-myb mRNAs. Additionally, PDCD4 has been shown to interact with poly(A)-binding protein (PABP), which affects translation termination, although the significance of this interaction is not fully understood. Considering the interaction between PABP and PDCD4, we hypothesized that PDCD4 may also be involved in translation termination. Using in vitro translation systems, we revealed that PDCD4 directly activates translation termination. PDCD4 stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the PABP, which also stimulates peptide release, PDCD4 activity in translation termination increases. PDCD4 regulates translation termination by facilitating the binding of release factors to the ribosome, increasing the GTPase activity of eRF3, and dissociating eRF3 from the posttermination complex. Using a toe-printing assay, we determined the first stage at which PDCD4 functions-binding of release factors to the A-site of the ribosome. However, preventing binding of eRF3 with PABP, PDCD4 suppresses subsequent rounds of translation termination. Based on these data, we assumed that human PDCD4 controls protein synthesis during translation termination. The described mechanism of the activity of PDCD4 in translation termination provides a new insight into its functioning during suppression of protein biosynthesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sistema Libre de Células/metabolismo , Humanos , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo
7.
RNA Biol ; 18(sup2): 804-817, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793288

RESUMEN

Nsp1 of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of the Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1, eRF1 and ABCE1. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates peptide release and formation of termination complexes. Detailed analysis of Nsp1 activity during translation termination stages reveals that Nsp1 facilitates stop codon recognition. We demonstrate that Nsp1 stimulation targets eRF1 and does not affect eRF3. Moreover, Nsp1 increases amount of the termination complexes at all three stop codons. The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that the biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and remove them from the pool of the active ribosomes.


Asunto(s)
Biosíntesis de Proteínas , SARS-CoV-2 , Proteínas no Estructurales Virales/fisiología , Animales , Sistema Libre de Células , Codón de Terminación/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Mutación , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Conejos , Ribosomas/metabolismo
8.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38260612

RESUMEN

Nonsense variants underlie many genetic diseases. The phenotypic impact of nonsense variants is determined by Nonsense-mediated mRNA decay (NMD), which degrades transcripts with premature termination codons (PTCs). NMD activity varies across transcripts and cellular contexts via poorly understood mechanisms. Here, by leveraging human genetic datasets, we uncover that the amino acid preceding the PTC dramatically affects NMD activity in human cells. We find that glycine codons in particular support high levels of NMD and are enriched before PTCs but depleted before normal termination codons (NTCs). Gly-PTC enrichment is most pronounced in human genes that tolerate loss-of-function variants. This suggests a strong biological impact for Gly-PTC in ensuring robust elimination of potentially toxic truncated proteins from non-essential genes. Biochemical assays revealed that the peptide release rate during translation termination is highly dependent on the identity of the amino acid preceding the stop codon. This release rate is the most critical feature determining NMD activity across our massively parallel reporter assays. Together, we conclude that NMD activity is significantly modulated by the "window of opportunity" offered by translation termination kinetics. Integrating the window of opportunity model with the existing framework of NMD would enable more accurate nonsense variant interpretation in the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA