Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hepatology ; 59(1): 296-306, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23813495

RESUMEN

UNLABELLED: Interleukin (IL)-17 is a proinflammatory and fibrogenic cytokine mainly produced by T-helper (Th)17 lymphocytes, together with the hepatoprotective and antifibrogenic cytokine, IL-22. Cannabinoid receptor 2 (CB2) is predominantly expressed in immune cells and displays anti-inflammatory and antifibrogenic effects. In the present study, we further investigated the mechanism underlying antifibrogenic properties of CB2 receptor and explored its effect on the profibrogenic properties of IL-17. After bile duct ligation (BDL), the hepatic expression of Th17 markers and IL-17 production were enhanced in CB2(-/-) mice, as compared to wild-type (WT) counterparts, and correlated with increased fibrosis in these animals. In contrast, IL-22-induced expression was similar in both animal groups. Inhibition of Th17 differentiation by digoxin lowered Th17 marker gene expression and IL-17 production and strongly reduced liver fibrosis in CB2(-/-) BDL mice. In vitro, differentiation of CD4(+) naïve T cells into Th17 lymphocytes was decreased by the CB2 agonist, JWH-133, and was associated with reduced Th17 marker messenger RNA expression and IL-17 production, without modification of IL-22 release. The inhibitory effect of JWH-133 on IL-17 production relied on signal transducer and activator of transcription (STAT)5 phosphorylation. Indeed, STAT5 phosphorylation and translocation into the nucleus was enhanced in JWH133-treated Th17 lymphocytes, and the addition of a STAT5 inhibitor reversed the inhibitory effect of the CB2 agonist on IL-17 production, without affecting IL-22 levels. Finally, in vitro studies also demonstrated that CB2 receptor activation in macrophages and hepatic myofibroblasts blunts IL-17-induced proinflammatory gene expression. CONCLUSION: These data demonstrate that CB2 receptor activation decreases liver fibrosis by selectively reducing IL-17 production by Th17 lymphocytes via a STAT5-dependent pathway, and by blunting the proinflammatory effects of IL-17 on its target cells, while preserving IL-22 production.


Asunto(s)
Interleucina-17/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Receptor Cannabinoide CB2/metabolismo , Células Th17/metabolismo , Animales , Conductos Biliares , Interleucinas/metabolismo , Ligadura , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/fisiología , Factor de Transcripción STAT5/metabolismo , Interleucina-22
2.
Circ Res ; 110(12): 1556-63, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22570367

RESUMEN

RATIONALE: Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer a powerful in vitro tool to investigate disease mechanisms and to perform patient-specific drug screening. To date, electrophysiological analysis of iPSC-CMs has been limited to single-cell recordings or low-resolution microelectrode array mapping of small cardiomyocyte aggregates. New methods of generating and optically mapping impulse propagation of large human iPSC-CM cardiac monolayers are needed. OBJECTIVE: Our first aim was to develop an imaging platform with versatility for multiparameter electrophysiological mapping of cardiac preparations, including human iPSC-CM monolayers. Our second aim was to create large electrically coupled human iPSC-CM monolayers for simultaneous action potential and calcium wave propagation measurements. METHODS AND RESULTS: A fluorescence imaging platform based on electronically controlled light-emitting diode illumination, a multiband emission filter, and single camera sensor was developed and utilized to monitor simultaneously action potential and intracellular calcium wave propagation in cardiac preparations. Multiple, large-diameter (≥1 cm), electrically coupled human cardiac monolayers were then generated that propagated action potentials and calcium waves at velocities similar to those commonly observed in rodent cardiac monolayers. CONCLUSIONS: The multiparametric imaging system presented here offers a scalable enabling technology to measure simultaneously action potential and intracellular calcium wave amplitude and dynamics of cardiac monolayers. The advent of large-scale production of human iPSC-CMs makes it possible to now generate sufficient numbers of uniform cardiac monolayers that can be utilized for the study of arrhythmia mechanisms and offers advantages over commonly used rodent models.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Separación Celular/métodos , Células Cultivadas , Humanos
3.
J Cardiovasc Dev Dis ; 10(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37233170

RESUMEN

BACKGROUND: Our aim was to determine the impact that metabolic syndrome (MS) produces in long-term heart rate variability (HRV), quantitatively synthesizing the results of published studies to characterize the cardiac autonomic dysfunction in MS. METHODS: We searched electronic databases for original research works with long-term HRV recordings (24 h) that compared people with MS (MS+) versus healthy people as a control group (MS-). This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: A total of 13 articles were included in the qualitative synthesis, and 7 of them met the required criteria to be included in the MA. SDNN (-0.33 [-0.57, 0.09], p = 0.008), LF (-0.32 [-0.41, -0.23], p < 0.00001), VLF (-0.21 [-0.31, -0.10], p = 0.0001) and TP (-0.20 [-0.33, -0.07], p = 0.002) decreased in patients with MS. The rMSSD (p = 0.41), HF (p = 0.06) and LF/HF ratio (p = 0.64) were not modified. CONCLUSIONS: In long-term recordings (24 h), SDNN, LF, VLF and TP were consistently decreased in patients with MS. Other parameters that could be included in the quantitative analysis were not modified in MS+ patients (rMSSD, HF, ratio LF/HF). Regarding non-linear analyses, the results are not conclusive due to the low number of datasets found, which prevented us from conducting an MA.

4.
J Clin Med ; 12(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762990

RESUMEN

BACKGROUND: Our aim was to determine the differences in short-term heart rate variability (HRV) between patients with metabolic syndrome (MS) and healthy controls. METHODS: We searched electronic databases for primary works with short-term HRV recordings (≤30 min) that made comparisons between individuals with MS versus healthy controls. This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: Twenty-eight articles were included in the qualitative synthesis and nineteen met the criteria for the MA. Patients with MS showed decreased SDNN (-0.36 [-0.44, -0.28], p < 0.001), rMSSD (-7.59 [-9.98, -5.19], p < 0.001), HF (-0.36 [-0.51, -0.20], p < 0.00001) and LF (-0.24 [-0.38, -0.1], p = 0.001). In subsequent subanalyses, we found a decrease in SDNN (-0.99 (-1.45, -0.52], p < 0.001), rMSSD (-10.18 [-16.85, -3.52], p < 0.01) and HF (-1.04 [-1.97, -0.1] p < 0.05) in women. In men, only LF showed a significant lower value (-0.26 [-0.5, -0.02], p < 0.05). We could not perform MA for non-linear variables. CONCLUSIONS: Patients with MS showed changes in time-domain analyses, with lower values in SDNN and rMSSD. Regarding frequency-domain analyses, MS patients showed a decrease in HF and LF When sex was used as a grouping variable, the MA was only possible in one of both sexes (men or women) in rMSSD and LF/HF. Lastly, when data for both men and women were available, subanalyses showed a different behavior compared to mixed analyses for SDNN, HF and LF, which might point towards a different impact of MS in men and women.

5.
Animals (Basel) ; 10(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887495

RESUMEN

Heart failure (HF) is a common disease in which the heart cannot meet the metabolic demands of the body. It mostly occurs in individuals 65 years or older. Cardiac transplantation is the best option for patients with advanced HF. High numbers of patient-specific cardiac myocytes (CMs) can be generated from induced pluripotent stem cells (iPSCs) and can possibly be used to treat HF. While some studies found iPSC-CMS can couple efficiently to the damaged heart and restore cardiac contractility, almost all found iPSC-CM transplantation is arrhythmogenic, thus hampering the use of iPSC-CMs for cardiac regeneration. Studies show that iPSC-CM cultures are highly heterogeneous containing atrial-, ventricular- and nodal-like CMs. Furthermore, they have an immature phenotype, resembling more fetal than adult CMs. There is an urgent need to overcome these issues. To this end, a novel and interesting avenue to increase CM maturation consists of modulating their metabolism. Combined with careful engineering and animal models of HF, iPSC-CMs can be assessed for their potential for cardiac regeneration and a cure for HF.

6.
Sci Rep ; 7(1): 9580, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852021

RESUMEN

Elongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes through translation of formins in eukaryotes.


Asunto(s)
Evolución Biológica , Proteínas de Microfilamentos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/genética , Drosophila/genética , Drosophila/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
7.
Circ Arrhythm Electrophysiol ; 9(4): e003638, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27069088

RESUMEN

BACKGROUND: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. METHODS AND RESULTS: Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of ß1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. CONCLUSIONS: Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Matriz Extracelular/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Diferenciación Celular , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Transducción de Señal
8.
Methods Mol Biol ; 1212: 103-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25063500

RESUMEN

Stem cells are capable of extensive self-renewal while preserving the ability to generate cell progeny that can differentiate into different cell types. Here, we describe some methods for the isolation of neural stem cells (NSCs) from the adult murine subependymal zone (SEZ), their extensive culturing and the assessment of their full developmental potential, particularly with respect to their differentiation capacity. The procedure includes chemically defined conditions such as absence of serum and addition of specific growth factors, in which differentiated cells die and are rapidly eliminated from the culture. In contrast, undifferentiated precursors become hypertrophic and proliferate, forming clonal spherical clusters called "neurospheres." Experimental manipulation of NSCs identifies populations of cells with differential restriction in their self-renewal potential and introduces a great interest in defining the conditions that guide their differentiation into a variety of neuronal and glial subtypes, aspects that have important implications for their use in future clinical purposes.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Células-Madre Neurales/citología , Cultivo Primario de Células/métodos , Animales , Ratones
9.
World J Stem Cells ; 7(4): 700-10, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26029342

RESUMEN

In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.

10.
Stem Cell Res ; 11(3): 1335-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24095945

RESUMEN

Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.


Asunto(s)
Miosinas Cardíacas/metabolismo , Separación Celular/métodos , Ventrículos Cardíacos/citología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Cadenas Ligeras de Miosina/metabolismo , Adenoviridae/genética , Miosinas Cardíacas/genética , Diferenciación Celular , Linaje de la Célula , Citometría de Flujo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/genética , Fenotipo , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA