Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EMBO Rep ; 24(8): e56297, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306041

RESUMEN

Precise regulation of mitochondrial fusion and fission is essential for cellular activity and animal development. Imbalances between these processes can lead to fragmentation and loss of normal membrane potential in individual mitochondria. In this study, we show that MIRO-1 is stochastically elevated in individual fragmented mitochondria and is required for maintaining mitochondrial membrane potential. We further observe a higher level of membrane potential in fragmented mitochondria in fzo-1 mutants and wounded animals. Moreover, MIRO-1 interacts with VDAC-1, a crucial mitochondrial ion channel located in the outer mitochondrial membrane, and this interaction depends on the residues E473 of MIRO-1 and K163 of VDAC-1. The E473G point mutation disrupts their interaction, resulting in a reduction of the mitochondrial membrane potential. Our findings suggest that MIRO-1 regulates membrane potential and maintains mitochondrial activity and animal health by interacting with VDAC-1. This study provides insight into the mechanisms underlying the stochastic maintenance of membrane potential in fragmented mitochondria.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
2.
Cell ; 133(3): 537-48, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455992

RESUMEN

To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.


Asunto(s)
Proteínas Hedgehog/metabolismo , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Expresión Génica , Biblioteca de Genes , Factores de Transcripción de Tipo Kruppel/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Mamíferos , Ratones , Células 3T3 NIH , Proteínas Oncogénicas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transactivadores/metabolismo , Células Vero , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc , Quinasas DyrK
3.
EMBO J ; 37(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29669860

RESUMEN

Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor-positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib-induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib-induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence-like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse-free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Piperazinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/análisis , Piridinas/farmacología , Temperatura , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular , Senescencia Celular , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/patología , Fenotipo , Pronóstico , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteínas Quinasas/farmacología , Tasa de Supervivencia , Ubiquitina/metabolismo
4.
Bioessays ; 39(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752618

RESUMEN

The maintenance of cell size homeostasis has been studied for years in different cellular systems. With the focus on 'what regulates cell size', the question 'why cell size needs to be maintained' has been largely overlooked. Recent evidence indicates that animal cells exhibit nonlinear cell size dependent growth rates and mitochondrial metabolism, which are maximal in intermediate sized cells within each cell population. Increases in intracellular distances and changes in the relative cell surface area impose biophysical limitations on cells, which can explain why growth and metabolic rates are maximal in a specific cell size range. Consistently, aberrant increases in cell size, for example through polyploidy, are typically disadvantageous to cellular metabolism, fitness and functionality. Accordingly, cellular hypertrophy can potentially predispose to or worsen metabolic diseases. We propose that cell size control may have emerged as a guardian of cellular fitness and metabolic activity.


Asunto(s)
Homeostasis/fisiología , Animales , Tamaño de la Célula , Humanos , Hipertrofia/fisiopatología , Mitocondrias/metabolismo , Mitocondrias/fisiología
5.
Nucleic Acids Res ; 43(2): 1019-34, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25550424

RESUMEN

Ribosome profiling identifies ribosome positions on translated mRNAs. A prominent feature of published datasets is the near complete absence of ribosomes in 3' untranslated regions (3'UTR) although substantial ribosome density can be observed on non-coding RNAs. Here we perform ribosome profiling in cultured Drosophila and human cells and show that different features of translation are revealed depending on the nuclease and the digestion conditions used. Most importantly, we observe high abundance of ribosome protected fragments in 3'UTRs of thousands of genes without manipulation of translation termination. Affinity purification of ribosomes indicates that the 3'UTR reads originate from ribosome protected fragments. Association of ribosomes with the 3'UTR may be due to ribosome migration through the stop codon or 3'UTR mRNA binding to ribosomes on the coding sequence. This association depends primarily on the relative length of the 3'UTR and may be related to translational regulation or ribosome recycling, for which the efficiency is known to inversely correlate with 3'UTR length. Together our results indicate that ribosome profiling is highly dependent on digestion conditions and that ribosomes commonly associate with the 3'UTR, which may have a role in translational regulation.


Asunto(s)
Regiones no Traducidas 3' , Ribosomas/metabolismo , Animales , Línea Celular , Drosophila , Humanos , Nucleasa Microcócica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasa Pancreática , Proteínas Ribosómicas/análisis , Subunidades Ribosómicas Pequeñas de Eucariotas/química
6.
Development ; 140(11): 2434-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23637332

RESUMEN

Overexpression screens are used to explore gene functions in Drosophila, but this strategy suffers from the lack of comprehensive and systematic fly strain collections and efficient methods for generating such collections. Here, we present a strategy that could be used efficiently to generate large numbers of transgenic Drosophila strains, and a collection of 1149 UAS-ORF fly lines that were created with the site-specific ΦC31 integrase method. For this collection, we used a set of 655 genes that were cloned as two variants, either as an open reading frame (ORF) with a native stop codon or with a C-terminal 3xHA tag. To streamline the procedure for transgenic fly generation, we demonstrate the utility of injecting pools of plasmids into embryos, each plasmid containing a randomised sequence (barcode) that serves as a unique identifier for plasmids and, subsequently, fly strains. We also developed a swapping technique that facilitates the rapid exchange of promoters and epitope tags in vivo, expanding the versatility of the ORF collection. The work described here serves as the basis of a systematic library of Gal4/UAS-regulated transgenes.


Asunto(s)
Drosophila/genética , Biblioteca de Genes , Técnicas Genéticas , Sistemas de Lectura Abierta , Animales , Código de Barras del ADN Taxonómico , Proteínas de Drosophila/genética , Epítopos/química , Plásmidos/metabolismo , Transgenes
7.
Mol Pharm ; 11(12): 4395-404, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25313982

RESUMEN

The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity.


Asunto(s)
Acetaminofén/química , Acetaminofén/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetaminofén/efectos adversos , Células HeLa , Humanos , Técnicas In Vitro , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Quinona Reductasas/metabolismo
8.
Natl Sci Rev ; 10(12): nwad227, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38152479

RESUMEN

N6-methyladenosine (m6A) is a critical regulator in the fate of RNA, but whether and how m6A executes its functions in different tissues remains largely obscure. Here we report downregulation of a crucial m6A reader, YTHDF2, leading to tissue-specific programmed cell deaths (PCDs) upon fluorene-9-bisphenol (BHPF) exposure. Currently, Bisphenol A (BPA) substitutes are widely used in plastic manufacturing. Interrogating eight common BPA substitutes, we detected BHPF in 14% serum samples of pregnant participants. In a zebrafish model, BHPF caused tissue-specific PCDs triggering cardiac and vascular defects. Mechanistically, BHPF-mediated downregulation of YTHDF2 reduced YTHDF2-facilitated translation of m6A-gch1 for cardiomyocyte ferroptosis, and decreased YTHDF2-mediated m6A-sting1 decay for caudal vein plexus (CVP) apoptosis. The two distinct YTHDF2-mediated m6A regulations and context-dependent co-expression patterns of gch1/ythdf2 and tnfrsf1a/ythdf2 contributed to YTHDF2-mediated tissue-specific PCDs, uncovering a new layer of PCD regulation. Since BHPF/YTHDF2-medaited PCD defects were also observed in mammals, BHPF exposure represents a potential health threat.

9.
Nature ; 439(7079): 1009-13, 2006 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-16496002

RESUMEN

Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Interferencia de ARN , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Tamaño de la Célula , Secuencia Conservada/genética , Drosophila melanogaster/metabolismo , Biblioteca de Genes , Genes de Insecto/genética , Humanos , Fenotipo , Fosforilación , Transducción de Señal
10.
Cell Regen ; 11(1): 38, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36451031

RESUMEN

Mitochondria are organelles that serve numerous critical cellular functions, including energy production, Ca2+ homeostasis, redox signaling, and metabolism. These functions are intimately linked to mitochondrial morphology, which is highly dynamic and capable of rapid and transient changes to alter cellular functions in response to environmental cues and cellular demands. Mitochondrial morphology and activity are critical for various physiological processes, including wound healing. In mammals, wound healing is a complex process that requires coordinated function of multiple cell types and progresses in partially overlapping but distinct stages: hemostasis and inflammation, cell proliferation and migration, and tissue remodeling. The repair process at the single-cell level forms the basis for wound healing and regeneration in tissues. Recent findings reveal that mitochondria fulfill the intensive energy demand for wound repair and aid wound closure by cytoskeleton remodeling via morphological changes and mitochondrial reactive oxygen species (mtROS) signaling. In this review, we will mainly elucidate how wounding induces changes in mitochondrial morphology and activity and how these changes, in turn, contribute to cellular wound response and repair.

11.
Research (Wash D C) ; 2022: 9802969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321260

RESUMEN

Despite extensive efforts, COVID-19 pandemic caused by the SARS-CoV-2 virus is still at large. Vaccination is an effective approach to curb virus spread, but several variants (e.g., delta, delta plus, omicron, and IHU) appear to weaken or possibly escape immune protection. Thus, novel and quickly scalable approaches to restrain SARS-CoV-2 are urgently needed. Multiple evidences showed thermal sensitivity of SARS-CoV-2 and negative correlation between environmental temperature and COVID-19 transmission with unknown mechanism. Here, we reveal a potential mechanism by which mild heat treatment destabilizes the wild-type RNA-dependent RNA polymerase (also known as nonstructural protein 12 (NSP12)) of SARS-CoV-2 as well as the P323L mutant commonly found in SARS-CoV-2 variants, including omicron and IHU. Mechanistically, heat treatment promotes E3 ubiquitin ligase ZNF598-dependent NSP12 ubiquitination leading to proteasomal degradation and significantly decreases SARS-CoV-2 RNA copy number and viral titer. A mild daily heat treatment maintains low levels of both wild-type and P323L mutant of NSP12, suggesting clinical potential. Collectively, this novel mechanism, heat-induced NSP12 degradation, suggests a prospective heat-based intervention against SARS-CoV-2.

12.
Bioeng Transl Med ; 7(1): e10250, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35111950

RESUMEN

Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.

13.
Cell Rep ; 41(4): 111546, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288717

RESUMEN

Human papillomavirus (HPV)-induced carcinogenesis critically depends on the viral early protein 7 (E7), making E7 an attractive therapeutic target. Here, we report that the E7 messenger RNA (mRNA)-containing oncotranscript complex can be selectively targeted by heat treatment. In HPV-infected cells, viral E7 mRNA is modified by N6-methyladenosine (m6A) and stabilized by IGF2BP1, a cellular m6A reader. Heat treatment downregulates E7 mRNA and protein by destabilizing IGF2BP1 without the involvement of canonical heat-shock proteins and reverses HPV-associated carcinogenesis in vitro and in vivo. Mechanistically, heat treatment promotes IGF2BP1 aggregation only in the presence of m6A-modified E7 mRNA to form distinct heat-induced m6A E7 mRNA-IGF2BP1 granules, which are resolved by the ubiquitin-proteasome system. Collectively, our results not only show a mutual regulation between m6A RNA and its reader but also provide a heat-treatment-based therapeutic strategy for HPV-associated malignancies by specifically downregulating E7 mRNA-IGF2BP1 oncogenic complex.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Humanos , Alphapapillomavirus/metabolismo , Carcinogénesis , Proteínas de Choque Térmico , Respuesta al Choque Térmico , Papillomaviridae , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Complejo de la Endopetidasa Proteasomal , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , Ubiquitina , Proteínas de Unión al ARN
14.
Oncogene ; 40(13): 2339-2354, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664451

RESUMEN

Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.


Asunto(s)
Linfoma de Células T/tratamiento farmacológico , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Carbono/metabolismo , Ácido Fólico/genética , Ácido Fólico/metabolismo , Humanos , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo
15.
Blood Cancer Discov ; 2(4): 388-401, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34661159

RESUMEN

The PML/RARα fusion protein is the oncogenic driver in acute promyelocytic leukemia (APL). Although most APL cases are cured by PML/RARα-targeting therapy, relapse and resistance can occur due to drug-resistant mutations. Here we report that thermal stress destabilizes the PML/RARα protein, including clinically identified drug-resistant mutants. AML1/ETO and TEL/AML1 oncofusions show similar heat shock susceptibility. Mechanistically, mild hyperthermia stimulates aggregation of PML/RARα in complex with nuclear receptor corepressors leading to ubiquitin-mediated degradation via the SIAH2 E3 ligase. Hyperthermia and arsenic therapy destabilize PML/RARα via distinct mechanisms and are synergistic in primary patient samples and in vivo, including three refractory APL cases. Collectively, our results suggest that by taking advantage of a biophysical vulnerability of PML/RARα, thermal therapy may improve prognosis in drug-resistant or otherwise refractory APL. These findings serve as a paradigm for therapeutic targeting of fusion oncoprotein-associated cancers by hyperthermia. SIGNIFICANCE: Hyperthermia destabilizes oncofusion proteins including PML/RARα and acts synergistically with standard arsenic therapy in relapsed and refractory APL. The results open up the possibility that heat shock sensitivity may be an easily targetable vulnerability of oncofusion-driven cancers.See related commentary by Wu et al., p. 300.


Asunto(s)
Hipertermia Inducida , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Proteínas de Fusión Oncogénica/genética , Tretinoina/uso terapéutico
16.
Sci Rep ; 10(1): 13963, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811891

RESUMEN

How organisms maintain cell size homeostasis is a long-standing problem that remains unresolved, especially in multicellular organisms. Recent experiments in diverse animal cell types demonstrate that within a cell population, cellular proliferation is low for small and large cells, but high at intermediate sizes. Here we use mathematical models to explore size-control strategies that drive such a non-monotonic profile resulting in the proliferation capacity being maximized at a target cell size. Our analysis reveals that most models of size control yield proliferation capacities that vary monotonically with cell size, and non-monotonicity requires two key mechanisms: (1) the growth rate decreases with increasing size for excessively large cells; and (2) cell division occurs as per the Adder model (division is triggered upon adding a fixed size from birth), or a Sizer-Adder combination. Consistent with theory, Jurkat T cell growth rates increase with size for small cells, but decrease with size for large cells. In summary, our models show that regulation of both growth and cell-division timing is necessary for size control in animal cells, and this joint mechanism leads to a target cell size where cellular proliferation capacity is maximized.


Asunto(s)
Proliferación Celular/fisiología , Homeostasis/fisiología , Animales , División Celular/fisiología , Aumento de la Célula , Tamaño de la Célula , Biología Computacional/métodos , Humanos , Mitosis , Modelos Biológicos , Modelos Teóricos
17.
Hepatol Int ; 14(4): 463-474, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32578019

RESUMEN

Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.


Asunto(s)
Ciclo Celular , Homeostasis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología
18.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 409-417, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30315834

RESUMEN

Joint regulation of growth rate and cell division rate determines cell size. Here we discuss how animal cells achieve cell size homeostasis potentially involving multiple signaling pathways converging at metabolic regulation of growth rate and cell cycle progression. While several models have been developed to explain cell size control, comparison of the two predominant models shows that size homeostasis is dependent on the ability to adjust cellular growth rate based on cell size. Consequently, maintenance of size homeostasis requires that larger cells can grow slower than small cells in relative terms. We review recent experimental evidence showing that such size adjustment occurs primarily at or immediately before the G1/S transition of the cell cycle. We further propose that bidirectional feedback between growth rate and size results in cell size sensing and discuss potential mechanisms how this may be accomplished.


Asunto(s)
División Celular/fisiología , Proliferación Celular/fisiología , Homeostasis/fisiología , Animales , Ciclo Celular/fisiología , Tamaño de la Célula , Células/citología , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Crecimiento/fisiología , Humanos , Modelos Biológicos , Transducción de Señal/fisiología
19.
Biomaterials ; 224: 119492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31557588

RESUMEN

Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.


Asunto(s)
Envejecimiento/patología , Exosomas/metabolismo , MicroARNs/uso terapéutico , Enfermedades Musculoesqueléticas/terapia , Células Madre/metabolismo , Animales , Humanos , Investigación Biomédica Traslacional
20.
Elife ; 72018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30247122

RESUMEN

Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods.We present a set of fly lines, called 'multicolor BiFC library', which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Biblioteca de Genes , Mapeo de Interacción de Proteínas/métodos , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Color , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Unión Proteica , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA