Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 62(10): 1577-1587, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37092990

RESUMEN

A recently discovered heme-dependent enzyme tyrosine hydroxylase (TyrH) offers a green approach for functionalizing the high-strength C-H and C-F bonds in aromatic compounds. However, there is ambiguity regarding the nature of the oxidant (compound 0 or compound I) involved in activating these bonds. Herein, using comprehensive molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical calculations, we reveal that it is compound I (Cpd I) that acts as the primary oxidant involved in the functionalization of both C-F and C-H bonds. The energy barrier for C-H and C-F activation using compound 0 (Cpd 0) as an oxidant was very high, indicating that Cpd 0 cannot be an oxidant. Consistent with the previous experimental finding, our simulation shows two different conformations of the substrate, where one orientation favors the C-H activation, while the other conformation prefers the C-F activation. As such, our mechanistic study shows that nature utilizes just one oxidant, that is, Cpd I, but it is the active site conformation that decides whether it selects C-F or C-H functionalization which may resemble involvement of two different oxidants.


Asunto(s)
Hemo , Tirosina 3-Monooxigenasa , Hemo/química , Oxidantes/química , Simulación de Dinámica Molecular , Dominio Catalítico
2.
Mol Cell Biochem ; 451(1-2): 21-35, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29943371

RESUMEN

The human Miro GTPases (hMiros) have recently emerged as important mediators of mitochondrial transport and may significantly contribute to the development of disorders such as Alzheimer's and schizophrenia. The hMiros represent two highly atypical members of the Ras superfamily, and exhibit several unique features: the presence of a GTPase domain at both the N-terminus and C-terminus, the presence of two calcium-binding EF-hand domains and localisation to the mitochondrial outer membrane. Here, elucidation of Miro GTPase signalling pathway components was achieved through the use of molecular biology, cell culture techniques and proteomics. An investigation of this kind has not been performed previously; we hoped, through these techniques, to enable the profiling and identification of pathways regulated by the human Miro GTPases. The results indicate several novel putative interaction partners for hMiro1 and hMiro2, including numerous proteins previously implicated in neurodegenerative pathways and the development of schizophrenia. Furthermore, we show that the N-terminal GTPase domain appears to fine-tune hMiro signalling, with GTP-bound versions of this domain associated with a diverse range of interaction partners in comparison to corresponding GDP-bound versions. Recent evidences suggest that human Miros participate in host-pathogen interactions with Vibrio Cholerae type III secretion proteins. We have undertaken a bioinformatics investigation to identify novel pathogenic effectors that might interact with Miros.


Asunto(s)
Biología Computacional/métodos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica/métodos , Proteínas de Unión al GTP rho/metabolismo , Transporte Biológico , Humanos , Transducción de Señal
3.
Org Biomol Chem ; 17(40): 8982-8986, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31584061

RESUMEN

A facile microwave assisted three-component protocol allows the synthesis of chiral aryl-1,2-mercaptoamines in water in a few minutes with high yields, bypassing the use of toxic aziridine intermediates. The chiral 1,2-mercaptoamines were then deracemized through enzymatic resolution of the racemates using monoamine oxidase (MAO-N) biocatalysts.


Asunto(s)
Aminas/metabolismo , Monoaminooxidasa/metabolismo , Agua/metabolismo , Aminas/síntesis química , Aminas/química , Biocatálisis , Microondas , Modelos Moleculares , Estructura Molecular , Monoaminooxidasa/química , Estereoisomerismo , Agua/química
4.
Bioorg Med Chem ; 26(7): 1320-1326, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28551096

RESUMEN

Enantiomerically pure 1-(6-methoxynaphth-2-yl) and 1-(6-(dimethylamino)naphth-2-yl) carbinols are fluorogenic substrates for aldo/keto reductase (KRED) enzymes, which allow the highly sensitive and reliable determination of activity and kinetic constants of known and unknown enzymes, as well as an immediate enantioselectivity typing. Because of its simplicity in microtiter plate format, the assay qualifies for the discovery of novel KREDs of yet unknown specificity among this vast enzyme superfamily. The suitability of this approach for enzyme typing is illustrated by an exemplary screening of a large collection of short-chain dehydrogenase/reductase (SDR) enzymes arrayed from a metagenomic approach. We believe that this assay format should match well the pharmaceutical industry's demand for acetophenone-type substrates and the continuing interest in new enzymes with broad substrate promiscuity for the synthesis of chiral, non-racemic carbinols.


Asunto(s)
Descubrimiento de Drogas , Fluorescencia , Colorantes Fluorescentes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Metanol/metabolismo , Oxidorreductasas/metabolismo , Colorantes Fluorescentes/química , Cinética , Metanol/química , Estructura Molecular , Oxidorreductasas/química , Estereoisomerismo
5.
Org Biomol Chem ; 13(28): 7803-12, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26107443

RESUMEN

Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and reductases, mostly featuring the enantioselective, enzymatic step early in the reaction pathway. Here, nitrile hydrolysing enzymes, namely nitrile hydratases and nitrilases, are investigated for the enzymatic hydrolysis of two different sidechain precursors. Both sidechain precursors, an openchain α-hydroxy-ß-amino nitrile and a cyanodihydrooxazole, are suitable for coupling to baccatin III directly after the enzymatic step. An extensive set of nitrilases and nitrile hydratases was screened towards their activity and selectivity in the hydrolysis of two taxol sidechain precursors and their epimers. A number of nitrilases and nitrile hydratases converted both sidechain precursors and their epimers.


Asunto(s)
Aminohidrolasas/metabolismo , Hidroliasas/metabolismo , Nitrilos/metabolismo , Paclitaxel/biosíntesis , Aminohidrolasas/química , Hidroliasas/química , Hidrólisis , Conformación Molecular , Nitrilos/química , Paclitaxel/química
6.
Chem Sci ; 15(13): 4969-4980, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550701

RESUMEN

The selective α,ß-desaturation of cyclic carbonyl compounds, which are found in the core of many steroid and bioactive molecules, using green chemistry is highly desirable. To achieve this task, we have for the first time described and solved the de novo structure of a member of the cyclohexanone dehydrogenase class of enzymes. The breadth of substrate specificity was investigated by assaying the cyclohexanone dehydrogenase, from Alicycliphilus denitrificans, against several cyclic ketones, lactones and lactams. To investigate substrate binding, a catalytic variant, Y195F, was generated and used to obtain a crystallographic complex with the natural substrate, cyclohexanone. This revealed substrate-active site interactions, as well as the proximity of the cofactor, flavin adenine dinucleotide, and enabled us to propose a mechanistic function to key amino acids. We then used molecular dynamic simulations to guide design to add functionality to the cyclohexanone dehydrogenase enzyme. The resulting W113A variant had overall improved enzyme activity and substrate scope, i.e., accepting the bulkier carbonyl compound, dihydrocoumarin. Structural analysis of the W113A variant revealed a broader, more open active site, which helped explain the modified substrate specificity. This work paves the way for future bespoke regioselective α,ß-desaturation in the synthesis of important bioactive molecules via rational enzyme engineering.

7.
Front Chem ; 11: 1327398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283898

RESUMEN

Lignin, a complex plant cell wall component, holds promise as a renewable aromatic carbon feedstock. p-Vanillin is a key product of lignin depolymerization and a precursor of protocatechuic acid (PCA) that has tremendous potential for biofuel production. While the GcoAB enzyme, native to Amycolatopsis sp., naturally catalyzes aryl-O-demethylation toward guaiacol, recent research introduced a single mutation, T296S, into the GcoAP450 enzyme, enabling it to catalyze aryl-O-demethylation of p-vanillin. This structural modification increases the efficiency of GcoAP450 for the natural substrate while being active for p-vanillin. This study reveals the increased flexibility of p-vanillin and its ability to adapt a favorable conformation by aligning the methoxy group in close proximity to Fe(IV) = O of Cpd I in the active site of the T296S variant. The QM/MM calculations in accordance with the experimental data validated that the rate-limiting step for the oxidation of p-vanillin is hydrogen atom abstraction and provided a detailed geometric structure of stationary and saddle points for the oxidation of p-vanillin.

8.
Metabolites ; 13(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37755290

RESUMEN

Escherichia coli is an invaluable research tool for many fields of biology, in particular for the production of recombinant enzymes. However, the activity of many such recombinant enzymes cannot be determined using standard biochemical assays, as often, the relevant substrates are not known, or the products produced are not detectable. Today, the biochemical footprints of such unknown enzyme activities can be revealed via the analysis of the metabolomes of the recombinant E. coli clones in which they are expressed, using sensitive technologies such as mass spectrometry. However, before any metabolites can be identified, it is necessary to achieve as high a coverage of the potential metabolites present within E. coli as possible. We have therefore analyzed a wide range of different extraction methods against the cell free extracts of various recombinant E. coli clones. The results were analyzed to determine the minimum number of extractions that achieved high recovery and coverage of metabolites. Two methods were selected for further analysis due to their ability to produce not only high numbers of ions, but also wide mass coverage and a high degree of complementarity. One extraction method uses acetonitrile and water, in a 4:1 ratio, which is then dried down and reconstituted in the chromatography running buffer prior to injection onto the chromatography column, and the other extraction method uses a combination of methanol, water and chloroform, in a 3:1:1 ratio, which is injected directly onto the chromatography column. These two extraction methods were shown to be complementary to each other, as regards the respective metabolites extracted, and to cover a large range of metabolites.

9.
Commun Biol ; 6(1): 576, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253778

RESUMEN

The human gut microbiota (HGM) is comprised of a very complex network of microorganisms, which interact with the host thereby impacting on host health and well-being. ß-glucan has been established as a dietary polysaccharide supporting growth of particular gut-associated bacteria, including members of the genera Bacteroides and Bifidobacterium, the latter considered to represent beneficial or probiotic bacteria. However, the exact mechanism underpinning ß-glucan metabolism by gut commensals is not fully understood. We show that mycoprotein represents an excellent source for ß-glucan, which is consumed by certain Bacteroides species as primary degraders, such as Bacteroides cellulosilyticus WH2. The latter bacterium employs two extracellular, endo-acting enzymes, belonging to glycoside hydrolase families 30 and 157, to degrade mycoprotein-derived ß-glucan, thereby releasing oligosaccharides into the growth medium. These released oligosaccharides can in turn be utilized by other gut microbes, such as Bifidobacterium and Lactiplantibacillus, which thus act as secondary degraders. We used a cross-feeding approach to track how both species are able to grow in co-culture.


Asunto(s)
beta-Glucanos , Humanos , beta-Glucanos/metabolismo , Bifidobacterium/metabolismo , Polisacáridos/metabolismo , Bacterias/metabolismo , Oligosacáridos/metabolismo , Bacteroides/metabolismo
10.
ACS Catal ; 13(5): 3370-3378, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36910872

RESUMEN

The oxidative aromatization of aliphatic N-heterocycles is a fundamental organic transformation for the preparation of a diverse array of heteroaromatic compounds. Despite many attempts to improve the efficiency and practicality of this transformation, most synthetic methodologies still require toxic and expensive reagents as well as harsh conditions. Herein, we describe two enzymatic strategies for the oxidation of 1,2,3,4-tetrahydroquinolines (THQs) and N-cyclopropyl-N-alkylanilines into quinolines and 2-quinolones, respectively. Whole cells and purified monoamine oxidase (MAO-N) enzymes were used to effectively catalyze the biotransformation of THQs into the corresponding aromatic quinoline derivatives, while N-cyclopropyl-N-alkylanilines were converted into 2-quinolone compounds through a horseradish peroxidase (HRP)-catalyzed annulation/aromatization reaction followed by Fe-mediated oxidation.

11.
Antonie Van Leeuwenhoek ; 102(2): 277-87, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22527623

RESUMEN

Streptococcus agalactiae is a major neonatal pathogen that is able to colonise various host environments and is associated with both gastrointestinal and vaginal maternal carriage. Maternal vaginal carriage represents the major source for transmission of S. agalactiae to the foetus/neonate and thus is a significant risk factor for neonatal disease. In order to understand factors influencing maternal carriage we have investigated growth and long term survival of S. agalactiae under conditions of low pH and nutrient stress in vitro. Surprisingly, given that vaginal pH is normally <4.5, S. agalactiae was found to survive poorly at low pH and failed to grow at pH 4.3. However, biofilm growth, although also reduced at low pH, was shown to enhance survival of S. agalactiae. Proteomic analysis identified 26 proteins that were more abundant under nutrient stress conditions (extended stationary phase), including a RelE family protein, a universal stress protein family member and four proteins that belong to the Gls24 (PF03780) stress protein family. Cumulatively, these data indicate that novel mechanisms are likely to operate that allow S. agalactiae survival at low pH and under nutrient stress during maternal vaginal colonisation and/or that the bacteria may access a more favourable microenvironment at the vaginal mucosa. As current in vitro models for S. agalactiae growth appear unsatisfactory, novel methods need to be developed to study streptococcal colonisation under physiologically-relevant conditions.


Asunto(s)
Enfermedades del Recién Nacido/microbiología , Viabilidad Microbiana , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/crecimiento & desarrollo , Ácidos/metabolismo , Medios de Cultivo/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Recién Nacido , Streptococcus agalactiae/química , Streptococcus agalactiae/metabolismo
12.
ACS Omega ; 7(24): 21109-21118, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35755387

RESUMEN

Cytochrome P450GcoA is an enzyme that catalyzes the guaiacol unit of lignin during the lignin breakdown via an aryl-O-demethylation reaction. This reaction is intriguing and is of commercial importance for its potential applications in the production of biofuel and plastic from biomass feedstock. Recently, the F169A mutation in P450GcoA elicits a promiscuous activity for syringol while maintaining the native activity for guaiacol. Using comprehensive MD simulations and hybrid QM/MM calculations, we address, herein, the origin of promiscuity in P450GcoA and its relevance to the specific activity toward lignin-derived substrates. Our study shows a crucial role of an aromatic dyad of F169 and F395 by regulating the water access to the catalytic center. The F169A mutation opens a water aqueduct and hence increases the native activity for G-lignin. We show that syringol binds very tightly to the WT enzyme, which blocks the conformational rearrangement needed for the second step of O-demethylation. The F169A creates an extra room favoring the conformational rearrangement in the 3-methoxycatechol (3MC) and second dose of the dioxygen insertion. Therefore, using MD simulations and complemented by thorough QM/MM calculations, our study shows how a single-site mutation rearchitects active site engineering for promiscuous syringol activity.

13.
Proteins ; 79(3): 965-74, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287626

RESUMEN

Bacterial enzymatic degradation of glycosaminoglycans such as hyaluronan and chondroitin is facilitated by polysaccharide lyases. Family 8 polysaccharide lyase (PL8) enzymes contain at least two domains: one predominantly composed of α-helices, the α-domain, and another predominantly composed of ß-sheets, the ß-domain. Simulation flexibility analyses indicate that processive exolytic cleavage of hyaluronan, by PL8 hyaluronate lyases, is likely to involve an interdomain shift, resulting in the opening/closing of the substrate-binding cleft between the α- and ß-domains, facilitating substrate translocation. Here, the Streptomyces coelicolor A3(2) PL8 enzyme was recombinantly expressed in and purified from Escherichia coli and biochemically characterized as a hyaluronate lyase. By using X-ray crystallography its structure was solved in complex with hyaluronan and chondroitin disaccharides. These findings show key catalytic interactions made by the different substrates, and on comparison with all other PL8 structures reveals that the substrate-binding cleft of the S. coelicolor enzyme is highly occluded. A third structure of the enzyme, harboring a mutation of the catalytic tyrosine, created via site-directed mutagenesis, interestingly revealed an interdomain shift that resulted in the opening of the substrate-binding cleft. These results add further support to the proposed processive mechanism of action of PL8 hyaluronate lyases and may indicate that the mechanism of action is likely to be universally used by PL8 hyaluronate lyases.


Asunto(s)
Polisacárido Liasas/química , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Hidrólisis , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
14.
Int J Med Microbiol ; 300(5): 331-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20133196

RESUMEN

Streptococcus agalactiae is a major neonatal pathogen that is able to adapt to a variety of host environments, including both rectal and vaginal maternal carriage, growth in amniotic fluid and at various neonatal body sites. As such it is important to elucidate the patterns of protein expression that are associated with S. agalactiae growth under these different in vivo conditions. To this end, we have grown S. agalactiae strain A909 under in vitro conditions reflecting those associated with maternal vaginal carriage (low pH, low oxygen, nutrient stress) and those associated with exposure to body fluids during invasive disease (neutral pH, aeration, nutrient sufficient). The protein profiles of bacterial cells grown under each of these conditions were compared using a proteome approach. A total of 76 proteins were reproducibly identified 16 of which were shown to be differentially expressed. The putative virulence factor C protein beta and several proteins linked to resistance to oxidative stress were found to be upregulated under the conditions hypothesised to reflect those associated with foetal exposure to S. agalactiae. Thus, these data add to the currently limited understanding of the molecular basis of S. agalactiae GBS adaptation to different environmental conditions.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Perfilación de la Expresión Génica , Proteoma/análisis , Streptococcus agalactiae/química , Streptococcus agalactiae/patogenicidad , Factores de Virulencia/biosíntesis , Adaptación Fisiológica , Aerobiosis , Medios de Cultivo/química , Streptococcus agalactiae/crecimiento & desarrollo , Regulación hacia Arriba
15.
Adv Protein Chem Struct Biol ; 122: 289-320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32951814

RESUMEN

Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).


Asunto(s)
Archaea , Bacterias , Sistema Enzimático del Citocromo P-450 , Genoma Arqueal , Genoma Bacteriano , Archaea/enzimología , Archaea/genética , Bacterias/enzimología , Bacterias/genética , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Anotación de Secuencia Molecular
16.
Artículo en Inglés | MEDLINE | ID: mdl-19850999

RESUMEN

The crystal structures of truncated forms of the Streptococcus pyogenes phage-encoded hyaluronate lyases HylP2 and HylP3 were determined by molecular replacement to 1.6 and 1.9 A resolution, respectively. The truncated forms crystallized in a hexagonal space group, forming a trimer around the threefold crystallographic axis. The arrangement of the fold is very similar to that observed in the structure of the related hyaluronate lyase HylP1. The structural elements putatively involved in substrate recognition are found to be conserved in both the HylP2 and HylP3 fragments.


Asunto(s)
Polisacárido Liasas/química , Bacteriófagos/metabolismo , Cristalografía por Rayos X , Streptococcus pyogenes/enzimología
17.
ACS Omega ; 3(5): 4847-4859, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458701

RESUMEN

Many natural organic compounds with pharmaceutical applications, including antibiotics (chlortetracycline and vancomycin), antifungal compounds (pyrrolnitrin), and chemotherapeutics (salinosporamide A and rebeccamycin) are chlorinated. Halogenating enzymes like tryptophan 7-halogenase (PrnA) and tryptophan 5-halogenase (PyrH) perform regioselective halogenation of tryptophan. In this study, the conformational dynamics of two flavin-dependent tryptophan halogenases-PrnA and PyrH-was investigated through molecular dynamics simulations, which are in agreement with the crystallographic and kinetic experimental studies of both enzymes and provide further explanation of the experimental data at an atomistic level of accuracy. They show that the binding sites of the cofactor-flavin adenine dinucleotide and the substrate do not come into close proximity during the simulations, thus supporting an enzymatic mechanism without a direct contact between them. Two catalytically important active site residues, glutamate (E346/E354) and lysine (K79/K75) in PrnA and PyrH, respectively, were found to play a key role in positioning the proposed chlorinating agent, hypochlorous acid. The changes in the regioselectivity between PrnA and PyrH arise as a consequence of differences in the orientation of substrate in its binding site.

18.
Microbiol Res ; 209: 79-85, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29580624

RESUMEN

Streptococcus mutans, a dental caries causing odontopathogen, produces X-prolyl dipeptidyl peptidase (Sm-XPDAP, encoded by pepX), a serine protease known to have a nutritional role. Considering the potential of proteases as therapeutic targets in pathogens, this study was primarily aimed at investigating the role of Sm-XPDAP in contributing to virulence-related traits. Dipeptidyl peptidase (DPP IV), an XPDAP analogous enzyme found in mammalian tissues,is a well known therapeutic target in Type II diabetes. Based on the hypothesis that gliptins, commonly used as anti-human-DPP IV drugs, may affect bacterial growth upon inhibition of Sm-XPDAP, we have determined their ex vivo antimicrobial and anti-biofilm activity towards S. mutans. All three DPP IV drugs tested reduced biofilm formation as determined by crystal violet staining. To link the observed biofilm inhibition to the human-DPP IV analogue present in S. mutans UA159, a pepX isogenic mutant was generated. In addition to reduced biofilm formation, CLSM studies of the biofilm formed by the pepX isogenic mutant showed these were comparable to those formed in the presence of saxagliptin, suggesting a probable role of this enzyme in biofilm formation by S. mutans UA159. The effects of both pepX deletion and DPP IV drugs on the proteome were studied using LC-MS/MS. Overall, this study highlights the potential of Sm-XPDAP as a novel anti-biofilm target and suggests a template molecule to synthesize lead compounds effective against this enzyme.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Caries Dental/prevención & control , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Adamantano/análogos & derivados , Adamantano/metabolismo , Antibacterianos/farmacología , Caries Dental/microbiología , Dipéptidos/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Pruebas de Sensibilidad Microbiana , Proteómica , Virulencia/genética
19.
Biochem J ; 399(2): 241-7, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16822234

RESUMEN

Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called 'flesh eating disease') and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove beta-O-linked N-acetylglucosamine from mammalian glycoproteins--an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-beta-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure-reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic beta-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Histona Acetiltransferasas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Complejos Multienzimáticos/metabolismo , Streptococcus pyogenes/enzimología , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Acetilglucosaminidasa/química , Secuencia de Aminoácidos , Animales , Células COS , Catálisis , Chlorocebus aethiops , Escherichia coli , Histona Acetiltransferasas/química , Humanos , Hidrólisis , Himecromona/análogos & derivados , Himecromona/química , Himecromona/metabolismo , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Resonancia Magnética Nuclear Biomolecular , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Tiazoles/química , Tiazoles/metabolismo , beta-N-Acetilhexosaminidasas
20.
Food Chem ; 232: 595-601, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490116

RESUMEN

The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry.


Asunto(s)
Cerveza , Ésteres , Fermentación , Alcoholes , Reacción de Maillard
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA