Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7881): 468-472, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552242

RESUMEN

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Asunto(s)
Ciclo del Carbono , Ecosistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Datos como Asunto , Humedad , Plantas/clasificación , Análisis de Componente Principal
2.
Plant Cell Environ ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863246

RESUMEN

The shortage of decades-long continuous measurements of ecosystem processes limits our understanding of how changing climate impacts forest ecosystems. We used continuous eddy-covariance and hydrometeorological data over 2002-2022 from a young Douglas-fir stand on Vancouver Island, Canada to assess the long-term trend and interannual variability in evapotranspiration (ET) and transpiration (T). Collectively, annual T displayed a decreasing trend over the 21 years with a rate of 1% yr-1, which is attributed to the stomatal downregulation induced by rising atmospheric CO2 concentration. Similarly, annual ET also showed a decreasing trend since evaporation stayed relatively constant. Variability in detrended annual ET was mostly controlled by the average soil water storage during the growing season (May-October). Though the duration and intensity of the drought did not increase, the drought-induced decreases in T and ET showed an increasing trend. This pattern may reflect the changes in forest structure, related to the decline in the deciduous understory cover during the stand development. These results suggest that the water-saving effect of stomatal regulation and water-related factors mostly determined the trend and variability in ET, respectively. This may also imply an increase in the limitation of water availability on ET in young forests, associated with the structural and compositional changes related to forest growth.

3.
Bull Environ Contam Toxicol ; 110(2): 46, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36690874

RESUMEN

We attempted to characterize zooplankton community response following spills of the unconventional crude oil, diluted bitumen (dilbit), into 10-m diameter, ~ 100 m3, ~ 1.5-m deep boreal lake limnocorrals, including two controls and seven dilbit treatments ranging from 1.5 to 180 L (1:100,000 to 1:1,000 v/v, dilbit:water). Community composition and abundances were monitored weekly to bi-weekly over three months. Total zooplankton biomass and abundance seemingly collapsed in all limnocorrals, regardless of treatment, though some rotifer species persisted. As a result, it was not possible to determine the impacts of dilbit. We theorize several potential non-oil-related reasons for the sudden community collapse - including elevated zinc levels, fish grazing pressures, and sampling biases - and provide guidance for future work using in-lake enclosures.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Lagos , Zooplancton , Contaminantes Químicos del Agua/análisis , Hidrocarburos
4.
Glob Chang Biol ; 28(15): 4605-4619, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474386

RESUMEN

Recent evidence suggests that the relationships between climate and boreal tree growth are generally non-stationary; however, it remains uncertain whether the relationships between climate and carbon (C) fluxes of boreal forests are stationary or have changed over recent decades. In this study, we used continuous eddy-covariance and microclimate data over 21 years (1996-2016) from a 100-year-old trembling aspen stand in central Saskatchewan, Canada to assess the relationships between climate and ecosystem C and water fluxes. Over the study period, the most striking climatic event was a severe, 3-year drought (2001-2003). Gross ecosystem production (GEP) showed larger interannual variability than ecosystem respiration (Re ) over 1996-2016, but Re was the dominant component contributing to the interannual variation in net ecosystem production (NEP) during post-drought years. The interannual variations in evapotranspiration (ET) and C fluxes were primarily driven by temperature and secondarily by water availability. Two-factor linear models combining precipitation and temperature performed well in explaining the interannual variation in C and water fluxes (R2 > .5). The temperature sensitivities of all three C fluxes (NEP, GEP and Re ) declined over the study period (p < .05), and, as a result, the phenological controls on annual NEP weakened. The decreasing temperature sensitivity of the C fluxes may reflect changes in forest structure, related to the over-maturity of the aspen stand at 100 years of age, and exacerbated by high tree mortality following the severe 2001-2003 drought. These results may provide an early warning signal of driver shift or even an abrupt status shift of aspen forest dynamics. They may also imply a universal weakening in the relationship between temperature and GEP as forests become over-mature, associated with the structural and compositional changes that accompany forest ageing.


Asunto(s)
Carbono , Taiga , Ecosistema , Bosques , Saskatchewan , Árboles , Agua
5.
New Phytol ; 229(5): 2586-2600, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33118171

RESUMEN

Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.


Asunto(s)
Tracheophyta , Clima , Bosques , América del Norte , Fotosíntesis , Hojas de la Planta , Estaciones del Año
6.
Glob Chang Biol ; 26(2): 901-918, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31529736

RESUMEN

Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta ) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought-induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.


Asunto(s)
Sequías , Ecosistema , Carbono , Ciclo del Carbono , Cambio Climático , Bosques , Calor , América del Norte , Estaciones del Año
7.
Glob Chang Biol ; 26(3): 1499-1518, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31553826

RESUMEN

Methane flux (FCH4 ) measurements using the eddy covariance technique have increased over the past decade. FCH4 measurements commonly include data gaps, as is the case with CO2 and energy fluxes. However, gap-filling FCH4 data are more challenging than other fluxes due to its unique characteristics including multidriver dependency, variabilities across multiple timescales, nonstationarity, spatial heterogeneity of flux footprints, and lagged influence of biophysical drivers. Some researchers have applied a marginal distribution sampling (MDS) algorithm, a standard gap-filling method for other fluxes, to FCH4 datasets, and others have applied artificial neural networks (ANN) to resolve the challenging characteristics of FCH4 . However, there is still no consensus regarding FCH4 gap-filling methods due to limited comparative research. We are not aware of the applications of machine learning (ML) algorithms beyond ANN to FCH4 datasets. Here, we compare the performance of MDS and three ML algorithms (ANN, random forest [RF], and support vector machine [SVM]) using multiple combinations of ancillary variables. In addition, we applied principal component analysis (PCA) as an input to the algorithms to address multidriver dependency of FCH4 and reduce the internal complexity of the algorithmic structures. We applied this approach to five benchmark FCH4 datasets from both natural and managed systems located in temperate and tropical wetlands and rice paddies. Results indicate that PCA improved the performance of MDS compared to traditional inputs. ML algorithms performed better when using all available biophysical variables compared to using PCA-derived inputs. Overall, RF was found to outperform other techniques for all sites. We found gap-filling uncertainty is much larger than measurement uncertainty in accumulated CH4 budget. Therefore, the approach used for FCH4 gap filling can have important implications for characterizing annual ecosystem-scale methane budgets, the accuracy of which is important for evaluating natural and managed systems and their interactions with global change processes.


Asunto(s)
Ecosistema , Metano , Algoritmos , Dióxido de Carbono , Aprendizaje Automático , Análisis de Componente Principal
8.
Glob Chang Biol ; 26(12): 6916-6930, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33022860

RESUMEN

We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-based T estimates show higher correlation to sap flow-based T than EC-based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystem T permitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.


Asunto(s)
Ecosistema , Transpiración de Plantas , Poaceae , Lluvia , Suelo , Agua
9.
Phys Rev Lett ; 124(1): 012501, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976711

RESUMEN

We report a 0.08% measurement of the bound neutron scattering length of ^{4}He using neutron interferometry. The result is b=(3.0982±0.0021[stat]±0.0014[syst]) fm. The corresponding free atomic scattering length is a=(2.4746±0.0017[stat]±0.0011[syst]) fm. With this result the world average becomes b=(3.0993±0.0025) fm, a 2% downward shift and a reduction in uncertainty by more than a factor of six. Our result is in disagreement with a previous neutron interferometric measurement but is in good agreement with earlier measurements using neutron transmission.

10.
Glob Chang Biol ; 25(9): 3056-3069, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31055880

RESUMEN

Long-term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999-2017 from a 120-year-old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long-term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long-term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two-factor linear models combining CO2 concentration and air temperature performed well (R2 ~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long-term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the 'CO2 fertilization effect' on long-term variations in RUEs. Since most RUE-based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE-based modeling of C fluxes.


Asunto(s)
Ecosistema , Picea , Dióxido de Carbono , Saskatchewan , Taiga
11.
Phys Rev Lett ; 123(7): 072001, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31491124

RESUMEN

We report on the measurement of the γp→J/ψp cross section from E_{γ}=11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find that the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67±0.39 GeV^{-2} at 10.7 GeV average energy. The LHCb pentaquark candidates P_{c}^{+} can be produced in the s channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions B(P_{c}^{+}→J/ψp) and cross sections σ(γp→P_{c}^{+})×B(P_{c}^{+}→J/ψp).

14.
Nature ; 479(7373): 384-7, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22094699

RESUMEN

Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.


Asunto(s)
Altitud , Temperatura , Árboles/crecimiento & desarrollo , Aire/análisis , Atmósfera/análisis , Fenómenos Biofísicos , Canadá , Clima , Conservación de los Recursos Naturales , Agricultura Forestal , Estaciones del Año , Estados Unidos
15.
J Environ Manage ; 192: 203-214, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28161628

RESUMEN

Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N2O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO2 and N2O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO2 emissions compared to biochar amended soil without fertilizer. In terms of CO2-eq, the net change in GHG emissions was mainly controlled by CO2 emissions, regardless of treatment, with CH4 and N2O together accounting for less than 1.5% of the total emissions.


Asunto(s)
Nitrógeno , Suelo , Dióxido de Carbono , Fertilizantes , Bosques , Metano , Óxido Nitroso
16.
Glob Chang Biol ; 21(1): 363-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24990223

RESUMEN

Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.


Asunto(s)
Atmósfera/química , Ecosistema , Bosques , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Estaciones del Año , Europa (Continente) , América del Norte , Fotosíntesis/fisiología
17.
J Environ Manage ; 152: 140-4, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25621388

RESUMEN

Nitrogen (N) enrichment of biochar from both inorganic and organic waste N sources has the potential to add economic and environmental value through its use as a slow release N fertilizer. We investigated the sorption of N by, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 °C from three feedstocks: poultry litter (PL with a carbon (C) to N ratio (C:N) of 14), softwood chips of spruce-pine-fir (SPF with a C:N of 470), and a 50:50 mixture of PL and SPF (PL/SPF). The prepared biochars were enriched with ammonium nitrate (AN) and urea ammonium nitrate (UAN). PL biochars had the lowest C content (50-56% C), but the highest pH (9.3-9.9), electrical conductivity (EC, 780-960 dS m(-1)), cation exchange capacity (CEC, 40-46 cmol kg(-1)), and N content (3.3-4.5%). While N content and hydrogen (H) to C atomic ratio (H:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly increased with pyrolysis temperature for all feedstocks. The PL and SPF biochars showed similar H:C and also similar N sorption and N release at all pyrolysis temperatures. These biochars sorbed up to 5% N by mass, irrespective of the source of N. However, PL/SPF biochar performed poorly in sorbing N from either AN or UAN. Biochar H:C was found to be unrelated to N sorption rates, suggesting that physical adsorption on active surfaces was the main mechanism of N sorption in these biochars. There were minor differences between N sorbed from NO3-N and NH4-N among different biochars. Very small amounts of sorbed N (0.2-0.4 mg N g(-1) biochar) was released when extracted with 1 M KCl solution, indicating that the retained N was strongly held in complex bonds, more so for NH4-N because the release of NO3-N was 3-4 times greater than that of NH4-N. NH4-N sorption far exceeded the effective CEC of the biochars, thereby suggesting that most of the sorption may be due to physical entrapment of NH4(+) in biochar pores. The results of this study suggest that biochar can be used to remove excess N from poultry and dairy manure and be a good mitigation option for reducing N leaching and gaseous losses.


Asunto(s)
Carbón Orgánico/química , Contaminantes Ambientales/química , Contaminación Ambiental/prevención & control , Restauración y Remediación Ambiental/métodos , Nitrógeno/química , Adsorción , Animales , Biomasa , Carbono/análisis , Fertilizantes/análisis , Calor , Estiércol/análisis , Nitratos/química , Aves de Corral , Urea/química , Madera/química
18.
Oecologia ; 176(3): 703-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182932

RESUMEN

Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.


Asunto(s)
Bosques , Modelos Biológicos , Fotosíntesis , Árboles/metabolismo , Tiempo (Meteorología) , Colombia Británica , Ritmo Circadiano , Saskatchewan , Estaciones del Año
19.
Psychoneuroendocrinology ; 167: 107085, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38833997

RESUMEN

Allostatic load (AL) has been shown to impact cancer outcomes. At present, no gold standard exists surrounding AL computation. As such, a systematic review of the literature was performed to identify studies that retrospectively calculated AL in patients with cancer. The following variables were collected for each study: AL calculation method, including the biomarkers used and their cutoff values, number of biosystems represented, definition of high AL, and the use of proxy biomarkers. Thirteen articles were included for full-text review. The number of biomarkers used in the calculation of AL varied considerably, ranging from 6 to 16. Considerable variability was also observed in terms of utilized biomarkers and biosystem representation. This lack of standardization complicates retrospective AL calculation among patients with cancer. Nonetheless, determining AL in patients with cancer presents an important step in the optimization of patient care and outcomes.

20.
Sci Total Environ ; 917: 170532, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296104

RESUMEN

Semi-arid ecosystems have been shown to dominate over tropical forests in determining the trend and interannual variability of land carbon (C) sink. However, the magnitude and variability of ecosystem C balance remain largely uncertain for temperate semi-arid shrublands at the decadal scale. Using eddy-covariance and micro-meteorological measurements, we quantified the interannual variation in net ecosystem production (NEP) and its components, gross primary production (GPP) and ecosystem respiration (Reco, i.e., the sum of autotrophic and heterotrophic respiration), in a semi-arid shrubland of the Mu Us Desert, northern China during 2012-2022. This shrubland was an overall weak C sink over the 11 years (NEP = 12 ± 46 g C m-2 yr-1, mean ± SD). Annual NEP ranged from -66 to 77 g C m-2 yr-1, with the ecosystem frequently switching between being an annual C sink and a C source. GPP was twice as sensitive as Reco to prolonged dry seasons, leading to a close negative relationship between annual NEP and dry-season length (R2 = 0.80, P < 0.01). Annual GPP (R2 = 0.51, P = 0.01) and NEP (R2 = 0.58, P < 0.01) were positively correlated with annual rainfall. Negative annual NEP (the ecosystem being a C source) tended to occur when the dry season exceeded 50 d yr-1 or rainfall dropped below 280 mm yr-1. Increases in dry-season length strengthened the effects of low soil moisture relative to high vapor pressure deficit in constraining NEP. Both GPP and NEP were more closely correlated with C uptake amplitude (annual maximum daily values) than with C uptake period. These findings indicate that dry-season extension under climate change may reduce the long-term C sequestration in semi-arid shrublands. Plant species adapted to prolonged dry seasons should be used in ecosystem restoration in the studied area to enhance ecosystem functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA