RESUMEN
In the centuries following Christopher Columbus's 1492 voyage to the Americas, transoceanic travel opened unprecedented pathways in global pathogen circulation. Yet no biological transfer is a single, discrete event. We use mathematical modeling to quantify historical risk of shipborne pathogen introduction, exploring the respective contributions of journey time, ship size, population susceptibility, transmission intensity, density dependence, and pathogen biology. We contextualize our results using port arrivals data from San Francisco, 1850 to 1852, and from a selection of historically significant voyages, 1492 to 1918. We offer numerical estimates of introduction risk across historically realistic ranges of journey time and ship population size, and show that both steam travel and shipping regimes that involved frequent, large-scale movement of people substantially increased risk of transoceanic pathogen circulation.