Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34085369

RESUMEN

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Asunto(s)
Candidiasis , Proteínas Fúngicas , Candida albicans , Células Epiteliales , Humanos , Necrosis
2.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027296

RESUMEN

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidad , Micotoxinas/toxicidad , Factores de Virulencia/metabolismo , Calcio/metabolismo , Candida albicans/inmunología , Candidiasis/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citotoxinas/genética , Citotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Micotoxinas/genética , Micotoxinas/metabolismo , Transducción de Señal/efectos de los fármacos , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/toxicidad
3.
Trends Cell Biol ; 31(3): 179-196, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33293167

RESUMEN

Fungal diseases contribute significantly to morbidity and mortality in humans. Although recent research has improved our understanding of the complex and dynamic interplay that occurs between pathogenic fungi and the human host, much remains to be elucidated concerning the molecular mechanisms that drive fungal pathogenicity and host responses to fungal infections. In recent times, there has been a significant increase in studies investigating the immunological functions of microbial-induced host cell death. In addition, pathogens use many strategies to manipulate host cell death pathways to facilitate their survival and dissemination. This review will focus on the mechanisms of host programmed cell death that occur during opportunistic fungal infections, and explore how cell death pathways may affect immunity towards pathogenic fungi.


Asunto(s)
Micosis , Piroptosis , Apoptosis , Muerte Celular , Humanos
4.
mBio ; 9(1)2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362237

RESUMEN

Candida albicans is an opportunistic fungal pathogen responsible for superficial and life-threatening infections in humans. During mucosal infection, C. albicans undergoes a morphological transition from yeast to invasive filamentous hyphae that secrete candidalysin, a 31-amino-acid peptide toxin required for virulence. Candidalysin damages epithelial cell plasma membranes and stimulates the activating protein 1 (AP-1) transcription factor c-Fos (via p38-mitogen-activated protein kinase [MAPK]), and the MAPK phosphatase MKP1 (via extracellular signal-regulated kinases 1 and 2 [ERK1/2]-MAPK), which trigger and regulate proinflammatory cytokine responses, respectively. The candidalysin toxin resides as a discrete cryptic sequence within a larger 271-amino-acid parental preproprotein, Ece1p. Here, we demonstrate that kexin-like proteinases, but not secreted aspartyl proteinases, initiate a two-step posttranslational processing of Ece1p to produce candidalysin. Kex2p-mediated proteolysis of Ece1p after Arg61 and Arg93, but not after other processing sites within Ece1p, is required to generate immature candidalysin from Ece1p, followed by Kex1p-mediated removal of a carboxyl arginine residue to generate mature candidalysin. C. albicans strains harboring mutations of Arg61 and/or Arg93 did not secrete candidalysin, were unable to induce epithelial damage and inflammatory responses in vitro, and showed attenuated virulence in vivo in a murine model of oropharyngeal candidiasis. These observations identify enzymatic processing of C. albicans Ece1p by kexin-like proteinases as crucial steps required for candidalysin production and fungal pathogenicity.IMPORTANCECandida albicans is an opportunistic fungal pathogen that causes mucosal infection in millions of individuals worldwide. Successful infection requires the secretion of candidalysin, the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is derived from its parent protein Ece1p. Here, we identify two key amino acids within Ece1p vital for processing and production of candidalysin. Mutations of these residues render C. albicans incapable of causing epithelial damage and markedly reduce mucosal infection in vivo Importantly, candidalysin production requires two individual enzymatic events. The first involves processing of Ece1p by Kex2p, yielding immature candidalysin, which is then further processed by Kex1p to produce the mature toxin. These observations identify important steps for C. albicans pathogenicity at mucosal surfaces.


Asunto(s)
Candida albicans/metabolismo , Carboxipeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Proproteína Convertasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Animales , Candida albicans/patogenicidad , Candidiasis Bucal/microbiología , Candidiasis Bucal/patología , Modelos Animales de Enfermedad , Ratones , Virulencia
5.
mBio ; 9(3)2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871918

RESUMEN

Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.


Asunto(s)
Candida albicans/fisiología , Candidiasis/microbiología , Células Epiteliales/microbiología , Mucosa Intestinal/microbiología , Intestinos/microbiología , Apoptosis , Candida albicans/genética , Candidiasis/fisiopatología , Enterocitos/citología , Enterocitos/microbiología , Células Epiteliales/citología , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/citología , Intestinos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA