Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dalton Trans ; 47(32): 10897-10905, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30022173

RESUMEN

Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH2(tBuNCH2CH2NMe2) and AlH2(tBuNCH2CH2NC4H8) are more thermally stable than common Al hydride thin film precursors such as AlH3(NMe3). ALD film growth experiments using TiCl4 and AlH2(tBuNCH2CH2NMe2) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å per cycle and resistivities around 600 µΩ cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3% of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC0.8N0.5 at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH2(tBuNCH2CH2NMe2), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH2(tBuNCH2CH2NC4H8).

2.
ACS Appl Mater Interfaces ; 10(16): 14200-14208, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29630338

RESUMEN

We report the growth of nickel metal films by atomic layer deposition (ALD) employing bis(1,4-di- tert-butyl-1,3-diazadienyl)nickel and tert-butylamine as the precursors. A range of metal and insulating substrates were explored. An initial deposition study was carried out on platinum substrates. Deposition temperatures ranged from 160 to 220 °C. Saturation plots demonstrated self-limited growth for both precursors, with a growth rate of 0.60 Å/cycle. A plot of growth rate versus substrate temperature showed an ALD window from 180 to 195 °C. Crystalline nickel metal was observed by X-ray diffraction for a 60 nm thick film deposited at 180 °C. Films with thicknesses of 18 and 60 nm grown at 180 °C showed low root mean square roughnesses (<2.5% of thicknesses) by atomic force microscopy. X-ray photoelectron spectroscopies of 18 and 60 nm thick films deposited on platinum at 180 °C revealed ionizations consistent with nickel metal after sputtering with argon ions. The nickel content in the films was >97%, with low levels of carbon, nitrogen, and oxygen. Films deposited on ruthenium substrates displayed lower growth rates than those observed on platinum substrates. On copper substrates, discontinuous island growth was observed at ≤1000 cycles. Film growth was not observed on insulating substrates under any conditions. The new nickel metal ALD procedure gives inherently selective deposition on ruthenium and platinum from 160 to 220 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA