Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 12(8): 752-60, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685907

RESUMEN

Inositol phosphates are widely produced throughout animal and plant tissues. Diphosphoinositol pentakisphosphate (InsP7) contains an energetic pyrophosphate bond. Here we demonstrate that disruption of inositol hexakisphosphate kinase 1 (InsP6K1), one of the three mammalian inositol hexakisphosphate kinases (InsP6Ks) that convert inositol hexakisphosphate (InsP6) to InsP7, conferred enhanced phosphatidylinositol-(3,4,5)-trisphosphate (PtdIns(3,4,5)P3)-mediated membrane translocation of the pleckstrin homology domain of the kinase Akt and thus augmented downstream PtdIns(3,4,5)P3 signaling in mouse neutrophils. Consequently, these neutrophils had greater phagocytic and bactericidal ability and amplified NADPH oxidase-mediated production of superoxide. These phenotypes were replicated in human primary neutrophils with pharmacologically inhibited InsP6Ks. In contrast, an increase in intracellular InsP7 blocked chemoattractant-elicited translocation of the pleckstrin homology domain to the membrane and substantially suppressed PtdIns(3,4,5)P3-mediated cellular events in neutrophils. Our findings establish a role for InsP7 in signal transduction and provide a mechanism for modulating PtdIns(3,4,5)P3 signaling in neutrophils.


Asunto(s)
Fosfatos de Inositol/inmunología , Neutrófilos/inmunología , Fosfatos de Fosfatidilinositol/inmunología , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Animales , Dimetilsulfóxido/farmacología , Células HL-60 , Humanos , Inmunidad Innata/inmunología , Isoenzimas , Ratones , Ratones Noqueados , N-Formilmetionina Leucil-Fenilalanina/farmacología , Fagocitosis/inmunología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
2.
Bioorg Med Chem ; 26(12): 3453-3460, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29805074

RESUMEN

Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline's antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA-the enzyme that catalyzes the first step of peptidoglycan biosynthesis-over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480 µM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/metabolismo , Peptidoglicano/biosíntesis , Staphylococcus aureus/enzimología , Streptomyces/química , Transferasas Alquil y Aril/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/enzimología , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Peptidoglicano/química , Unión Proteica , Estructura Terciaria de Proteína , Staphylococcus aureus/efectos de los fármacos , Streptomyces/metabolismo
3.
PLoS Pathog ; 11(12): e1005341, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26684646

RESUMEN

Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction.


Asunto(s)
Hipoxia de la Célula/genética , Interacciones Huésped-Patógeno/genética , Osteomielitis/microbiología , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Animales , Línea Celular , Elementos Transponibles de ADN/genética , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Genes Virales/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Percepción de Quorum/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/patogenicidad , Virulencia/genética , Factores de Virulencia/genética
4.
Mol Microbiol ; 98(2): 318-28, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175079

RESUMEN

Small RNAs are principal elements of bacterial gene regulation and physiology. Two small RNAs in Brucella abortus, AbcR1 and AbcR2, are required for wild-type virulence. Examination of the abcR loci revealed the presence of a gene encoding a LysR-type transcriptional regulator flanking abcR2 on chromosome 1. Deletion of this lysR gene (bab1_1517) resulted in the complete loss of abcR2 expression while no difference in abcR1 expression was observed. The B. abortus bab1_1517 mutant strain was significantly attenuated in macrophages and mice, and bab1_1517 was subsequently named vtlR for virulence-associated transcriptional LysR-family regulator. Microarray analysis revealed three additional genes encoding small hypothetical proteins also under the control of VtlR. Electrophoretic mobility shift assays demonstrated that VtlR binds directly to the promoter regions of abcR2 and the three hypothetical protein-encoding genes, and DNase I footprint analysis identified the specific nucleotide sequence in these promoters that VtlR binds to and drives gene expression. Strikingly, orthologs of VtlR are encoded in a wide range of host-associated α-proteobacteria, and it is likely that the VtlR genetic system represents a common regulatory circuit critical for host-bacterium interactions.


Asunto(s)
Alphaproteobacteria/genética , Proteínas Bacterianas/genética , Brucella abortus/genética , Secuencia Conservada/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Brucella abortus/patogenicidad , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Macrófagos/microbiología , Ratones , Análisis por Micromatrices , Regiones Promotoras Genéticas , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Virulencia/genética
5.
Antimicrob Agents Chemother ; 60(2): 862-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26596945

RESUMEN

In the midst of the current antimicrobial pipeline void, alternative approaches are needed to reduce the incidence of infection and decrease reliance on last-resort antibiotics for the therapeutic intervention of bacterial pathogens. In that regard, mupirocin ointment-based decolonization and wound maintenance practices have proven effective in reducing Staphylococcus aureus transmission and mitigating invasive disease. However, the emergence of mupirocin-resistant strains has compromised the agent's efficacy, necessitating new strategies for the prevention of staphylococcal infections. Herein, we set out to improve the performance of mupirocin-based ointments. A screen of a Food and Drug Administration (FDA)-approved drug library revealed that the antibiotic neomycin sulfate potentiates the antimicrobial activity of mupirocin, whereas other library antibiotics did not. Preliminary mechanism of action studies indicate that neomycin's potentiating activity may be mediated by inhibition of the organism's RNase P function, an enzyme that is believed to participate in the tRNA processing pathway immediately upstream of the primary target of mupirocin. The improved antimicrobial activity of neomycin and mupirocin was maintained in ointment formulations and reduced S. aureus bacterial burden in murine models of nasal colonization and wound site infections. Combination therapy improved upon the effects of either agent alone and was effective in the treatment of contemporary methicillin-susceptible, methicillin-resistant, and high-level mupirocin-resistant S. aureus strains. From these perspectives, combination mupirocin-and-neomycin ointments appear to be superior to that of mupirocin alone and warrant further development.


Asunto(s)
Antibacterianos/uso terapéutico , Sinergismo Farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mupirocina/uso terapéutico , Neomicina/uso terapéutico , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Administración Intranasal , Animales , Portador Sano/tratamiento farmacológico , Portador Sano/prevención & control , Combinación de Medicamentos , Farmacorresistencia Bacteriana , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Cavidad Nasal/microbiología , Pomadas/uso terapéutico , ARN Ribosómico 16S/genética , Ribonucleasa P/antagonistas & inhibidores , Infecciones Cutáneas Estafilocócicas/prevención & control , Estados Unidos
6.
Antimicrob Agents Chemother ; 58(11): 6360-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25114126

RESUMEN

Adaptive antibiotic resistance is a newly described phenomenon by which Acinetobacter baumannii induces efflux pump activity in response to host-associated environmental cues that may, in part, account for antibiotic treatment failures against clinically defined susceptible strains. To that end, during adaptation to growth in human serum, the organism induces approximately 22 putative efflux-associated genes and displays efflux-mediated minocycline tolerance at antibiotic concentrations corresponding to patient serum levels. Here, we show that in addition to minocycline, growth in human serum elicits A. baumannii efflux-mediated tolerance to the antibiotics ciprofloxacin, meropenem, tetracycline, and tigecycline. Moreover, using a whole-cell high-throughput screen and secondary assays, we identified novel serum-associated antibiotic efflux inhibitors that potentiated the activities of antibiotics toward serum-grown A. baumannii. Two compounds, Acinetobacter baumannii efflux pump inhibitor 1 (ABEPI1) [(E)-4-((4-chlorobenzylidene)amino)benezenesulfonamide] and ABEPI2 [N-tert-butyl-2-(1-tert-butyltetrazol-5-yl)sulfanylacetamide], were shown to lead to minocycline accumulation within A. baumannii during serum growth and inhibit the efflux potential of the organism. While both compounds also inhibited the antibiotic efflux properties of the bacterial pathogen Pseudomonas aeruginosa, they did not display significant cytotoxicity toward human cells or mammalian Ca(2+) channel inhibitory effects, suggesting that ABEPI1 and ABEPI2 represent promising structural scaffolds for the development of new classes of bacterial antibiotic efflux pump inhibitors that can be used to potentiate the activities of current and future antibiotics for the therapeutic intervention of Gram-negative bacterial infections.


Asunto(s)
Acetamidas/farmacología , Acinetobacter baumannii/enzimología , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Sulfonamidas/farmacología , Tetrazoles/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Antibacterianos/efectos adversos , Antibacterianos/sangre , Antibacterianos/farmacología , Canales de Calcio/metabolismo , Línea Celular , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple , Células HEK293 , Humanos , Meropenem , Pruebas de Sensibilidad Microbiana , Minociclina/análogos & derivados , Minociclina/sangre , Minociclina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Tetraciclina/farmacología , Tienamicinas/farmacología , Tigeciclina
7.
Proc Natl Acad Sci U S A ; 107(8): 3546-51, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20142487

RESUMEN

Neutrophil chemotaxis plays an essential role in innate immunity, but the underlying cellular mechanism is still not fully characterized. Here, using a small-molecule functional screening, we identified NADPH oxidase-dependent reactive oxygen species as key regulators of neutrophil chemotactic migration. Neutrophils with pharmacologically inhibited oxidase, or isolated from chronic granulomatous disease (CGD) patients and mice, formed more frequent multiple pseudopodia and lost their directionality as they migrated up a chemoattractant concentration gradient. Knocking down NADPH oxidase in differentiated neutrophil-like HL60 cells also led to defective chemotaxis. Consistent with the in vitro results, adoptively transferred CGD murine neutrophils showed impaired in vivo recruitment to sites of inflammation. Together, these results present a physiological role for reactive oxygen species in regulating neutrophil functions and shed light on the pathogenesis of CGD.


Asunto(s)
Quimiotaxis , Enfermedad Granulomatosa Crónica/inmunología , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas , Animales , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Enfermedad Granulomatosa Crónica/enzimología , Células HL-60 , Humanos , Ratones , Ratones Endogámicos , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología
8.
Antibiotics (Basel) ; 12(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37508269

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen of serious healthcare concern that is becoming increasingly difficult to treat due to antibiotic treatment failure. Recent studies have revealed that clinically defined antibiotic-susceptible strains upregulate the expression of a repertoire of putative drug efflux pumps during their growth under biologically relevant conditions, e.g., in human serum, resulting in efflux-associated resistance to physiologically achievable antibiotic levels within a patient. This phenomenon, termed Adaptive Efflux Mediated Resistance (AEMR), has been hypothesized to account for one mechanism by which antibiotic-susceptible A. baumannii fails to respond to antibiotic treatment. In the current study, we sought to identify genetic determinants that contribute to A. baumannii serum-associated AEMR by screening a transposon mutant library for members that display a loss of the AEMR phenotype. Results revealed that mutation of a putative pirin-like protein, YhaK, results in a loss of AEMR, a phenotype that could be complemented by a wild-type copy of the yhaK gene and was verified in a second strain background. Ethidium bromide efflux assays confirmed that the loss of AEMR phenotype due to pirin-like protein mutation correlated with reduced overarching efflux capacity. Further, flow cytometry and confocal microscopy measures of a fluorophore 7-(dimethylamino)-coumarin-4-acetic acid (DMACA)-tagged levofloxacin isomer, ofloxacin, further verified that YhaK mutation reduces AEMR-mediated antibiotic efflux. RNA-sequencing studies revealed that YhaK may be required for the expression of multiple efflux-associated systems, including MATE and ABC families of efflux pumps. Collectively, the data indicate that the A. baumannii YhaK pirin-like protein plays a role in modulating the organism's adaptive efflux-mediated resistance phenotype.

9.
mSphere ; 1(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27642637

RESUMEN

Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A. baumannii and S. aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA-approved agent. Here we report data that indicate that the antimicrobial properties of silver sulfadiazine ointments can be significantly improved by the addition of the antifungal zinc pyrithione, suggesting that such combinations may provide an improved therapeutic option for the topical treatment of wound infections.

10.
PLoS One ; 9(1): e85729, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489668

RESUMEN

Acinetobacter baumannii is an emerging bacterial pathogen of considerable medical concern. The organism's transmission and ability to cause disease has been associated with its propensity to colonize and form biofilms on abiotic surfaces in health care settings. To better understand the genetic determinants that affect biomaterial attachment, we performed a transposon mutagenesis analysis of abiotic surface-colonization using A. baumannii strain 98-37-09. Disruption of an RNase T2 family gene was found to limit the organism's ability to colonize polystyrene, polypropylene, glass, and stainless steel surfaces. DNA microarray analyses revealed that in comparison to wild type and complemented cells, the RNase T2 family mutant exhibited reduced expression of 29 genes, 15 of which are predicted to be associated with bacterial attachment and surface-associated motility. Motility assays confirmed that RNase T2 mutant displays a severe motility defect. Taken together, our results indicate that the RNase T2 family protein identified in this study is a positive regulator of A. baumannii's ability to colonize inanimate surfaces and motility. Moreover, the enzyme may be an effective target for the intervention of biomaterial colonization, and consequently limit the organism's transmission within the hospital setting.


Asunto(s)
Acinetobacter baumannii/enzimología , Acinetobacter baumannii/fisiología , Endorribonucleasas/metabolismo , Acinetobacter baumannii/genética , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Materiales Biocompatibles , Endorribonucleasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Poliestirenos/química
11.
FEMS Immunol Med Microbiol ; 64(3): 403-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22211672

RESUMEN

Acinetobacter baumannii has emerged as a bacterial pathogen of considerable healthcare concern. Yet, little is known about the organism's basic biological processes and the regulatory networks that modulate expression of its virulence factors and antibiotic resistance. Using Affymetrix GeneChips , we comprehensively defined and compared the transcriptomes of two A. baumannii strains, ATCC 17978 and 98-37-09, during exponential and stationary phase growth in Luria-Bertani (LB) medium. Results revealed that in addition to expected growth phase-associated metabolic changes, several putative virulence factors were dramatically regulated in a growth phase-dependent manner. Because a common feature between the two most severe types of A. baumannii infection, pneumonia and septicemia, includes the organism's dissemination to visceral organs via the circulatory system, microarray studies were expanded to define the expression properties of A. baumannii during growth in human serum. Growth in serum significantly upregulated iron acquisition systems, genes associated with epithelial cell adherence and DNA uptake, as well as numerous putative drug efflux pumps. Antibiotic susceptibility testing verified that the organism exhibits increased antibiotic tolerance when cultured in human serum, as compared to LB medium. Collectively, these studies provide researchers with a comprehensive database of A. baumannii's expression properties in LB medium and serum and identify biological processes that may contribute to the organism's virulence and antibiotic resistance.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , ADN Bacteriano/genética , Transcriptoma , Infecciones por Acinetobacter/sangre , Acinetobacter baumannii/genética , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/metabolismo , Adhesión Celular/genética , ADN Bacteriano/metabolismo , Farmacorresistencia Microbiana/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Expresión Génica/genética , Humanos , Hierro/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neumonía/genética , Neumonía/metabolismo , Neumonía/microbiología , Sepsis/genética , Sepsis/metabolismo , Sepsis/microbiología , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA