Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nematol ; 47(4): 296-301, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26941457

RESUMEN

Dispersion of bacterivorous nematodes in soil is a crucial ecological process that permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by modifying soil structure, are likely to influence this process, they have so far been neglected. In this study, using an original three-compartment microcosm experimental design and polyvinyl chloride (PVC) bars to mimic plant roots, we tested the ability of roots to improve the dispersion of bacterivorous nematode populations through two wet, nonuniform granular (glass bead) media imitating contrasting soil textures. We showed that artificial roots increased migration time of bacterivorous nematode populations in the small-bead medium, suggesting that plant roots may play an important role in nematode dispersion in fine-textured soils or when soil compaction is high.

2.
Environ Sci Pollut Res Int ; 30(7): 17472-17486, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36197613

RESUMEN

While long-term organic fertilizer (OF) applications tend to decrease copper (Cu) and zinc (Zn) availability in agricultural soils, earthworm bioturbation has been reported to have the opposite effect. Thus, the consequences of OF amendments in earthworm-inhabited soils on Cu and Zn bioavailability to earthworms are still under debate. Here, we assessed the effect of a decade of agronomically realistic OF applications on Cu and Zn availability in earthworm-inhabited soils and the consequences on Cu and Zn bioavailability to earthworms. An epi-endogeic species (Dichogaster saliens) was exposed in microcosms to three field-collected soils that had received either no, mineral, or organic fertilization for a decade. Dissolved organic matter (DOM) properties (i.e., concentration, aromaticity, and binding properties toward Cu), pH, and Cu and Zn availability (i.e., total concentration and free ionic activity) were determined in the solution of the soil containing earthworms. Cu and Zn bioavailability was assessed by measuring the net accumulation (ng) and concentration of Cu and Zn in earthworms (mg kg-1). Despite soil Cu and Zn contamination induced by a decade of OF applications, organic fertilization induced an increase in soil pH and DOM properties that drove the reduction of Cu and Zn availability in earthworm-inhabited soils, while bioturbation had little effect on soil pH, DOM properties, and Cu and Zn availability. Consistently, Cu and Zn bioavailability to earthworms did not increase with OF applications. From an ecotoxicological perspective, our results suggest that agronomically realistic applications of OF for a decade should not pose a risk to earthworms in terms of Cu and Zn net accumulation, but further studies have to be undertaken to understand consequent long-term toxicity after exposure.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Cobre/química , Zinc/metabolismo , Suelo/química , Disponibilidad Biológica , Contaminantes del Suelo/análisis , Materia Orgánica Disuelta , Fertilización
3.
Data Brief ; 43: 108458, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35911628

RESUMEN

A basic understanding of the fertilization resources (FR) characteristics is required to drive soil functions following the FR application, and to improve crop productivity. The datasets presented include the FR characteristics, i.e. their nutrient contents and biochemical quality, and their effects on soil in carbon (C) and nitrogen (N) mineralization. We selected nineteen FR from local farmers, from laboratory institution and from commercial producers. The soil used in experiment was sampled in Imerintsiatosika locality, located in the Central Highlands of Madagascar. Nutrient contents of FR were evaluated by measuring total carbon, nitrogen, phosphorus, potassium, calcium, magnesium and sulphur contents. Biochemical quality of the products was assayed by fractioning organic matter of organic resources in soluble compartments, hemicelluloses, celluloses and lignin equivalent. Laboratory incubations in microcosm experiments were conducted with the mixture of soil and fertilization resources to determine C and N mineralization rates. Carbon mineralization rate was measured using microgas chromatography, and nitrogen mineralization rates were analyzed by colorimetry on a continuous flow analyzer.

4.
Sci Total Environ ; 795: 148934, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328927

RESUMEN

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation. In each agroecosystem, we tested several plant communities for diversification, as compared to a matching low diversity management for their cropping system. Plant residue restitution, N, P and lignin contents were measured for each plant community. In parallel, the soil under each community was analyzed for organic C and N, inorganic N, Olsen P, soil pH and nematode community composition. Soil potential fertility was assessed with plant bioassays under greenhouse controlled climatic conditions. Overall, plant diversification had a positive effect on soil fertility across all sites, with contrasting effects depending on soil type and legumes presence in the community. Communities with legumes improved soil fertility indicators of volcanic soils, which was demonstrated through significantly higher plant biomass production in the bioassays (+18%) and soil inorganic N (+26%) compared to the low diversity management. Contrastingly, communities without legumes were the most beneficial in Ferralsols, with increases in plant biomass production in the bioassays (+39%), soil Olsen P (+46%), soil C (+26%), and pH (+5%). Piecewise structural equation models with Shipley's test revealed that plant diversification impacts on volcanic soil fertility were related to soil N availability, driven by litter N. Meanwhile, Ferralsols fertility was related to soil P availability, driven by litter P. These findings underline the importance of multifactorial and multi-sites experiments to inform trait-based frameworks used in designing optimal plant diversification in agroecological systems.


Asunto(s)
Fabaceae , Nematodos , Animales , Biomasa , Suelo , Microbiología del Suelo
5.
Sci Data ; 8(1): 136, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021166

RESUMEN

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Asunto(s)
Biodiversidad , Oligoquetos/clasificación , Animales , Biomasa
6.
Science ; 366(6464): 480-485, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31649197

RESUMEN

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.


Asunto(s)
Biodiversidad , Oligoquetos , Distribución Animal , Animales , Biomasa , Clima , Planeta Tierra , Ecosistema , Modelos Lineales , Modelos Biológicos , Suelo
7.
ISME J ; 12(2): 451-462, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29039844

RESUMEN

The priming effect in soil is proposed to be generated by two distinct mechanisms: 'stoichiometric decomposition' and/or 'nutrient mining' theories. Each mechanism has its own dynamics, involves its own microbial actors, and targets different soil organic matter (SOM) pools. The present study aims to evaluate how climatic parameters drive the intensity of each priming effect generation mechanism via the modification of soil microbial and physicochemical properties. Soils were sampled in the center of Madagascar, along climatic gradients designed to distinguish temperature from rainfall effects. Abiotic and biotic soil descriptors were characterized including bacterial and fungal phylogenetic composition. Potential organic matter mineralization and PE were assessed 7 and 42 days after the beginning of incubation with 13C-enriched wheat straw. Both priming mechanisms were mainly driven by the mean annual temperature but in opposite directions. The priming effect generated by stoichiometric decomposition was fostered under colder climates, because of soil enrichment in less developed organic matter, as well as in fast-growing populations. Conversely, the priming effect generated by nutrient mining was enhanced under warmer climates, probably because of the lack of competition between slow-growing populations mining SOM and fast-growing populations for the energy-rich residue entering the soil. Our study leads to hypotheses about the consequences of climate change on both PE generation mechanisms and associated consequences on soil carbon sequestration.


Asunto(s)
Clima , Microbiología del Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Carbono/análisis , Secuestro de Carbono , Hongos/clasificación , Hongos/aislamiento & purificación , Madagascar , Filogenia , Suelo/química , Temperatura
8.
ISME J ; 6(1): 213-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21753801

RESUMEN

Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a (13)C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of (12)CO(2) and (13)CO(2) were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum.


Asunto(s)
Bacterias/clasificación , Oligoquetos/fisiología , Microbiología del Suelo , Agricultura , Animales , Ecosistema , Madagascar , Datos de Secuencia Molecular , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA