Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 116, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631065

RESUMEN

The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS. Available anti-histone therapies have failed in clinical trials due to off-target effects such as bleeding and toxicity. Here, we describe a therapeutic strategy for MODS based on the neutralization of histones by chemically stabilized nucleic acid bio-drugs (aptamers). Systematic evolution of ligands by exponential enrichment technology identified aptamers that selectively bind those histones responsible for MODS and do not bind to serum proteins. We demonstrate the efficacy of histone-specific aptamers in human cells and in a murine model of MODS. These aptamers could have a significant therapeutic benefit in the treatment of multiple diverse clinical conditions associated with MODS.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Insuficiencia Multiorgánica/metabolismo , Proteínas Nucleares/metabolismo , ARN/metabolismo , Animales , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Histonas/antagonistas & inhibidores , Histonas/genética , Histonas/metabolismo , Humanos , Ratones Endogámicos BALB C , Insuficiencia Multiorgánica/genética , Insuficiencia Multiorgánica/prevención & control , Proteínas Nucleares/genética , Unión Proteica , ARN/antagonistas & inhibidores , ARN/genética
2.
Mol Ther Nucleic Acids ; 8: 542-557, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28918054

RESUMEN

A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA