Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 536(7616): 312-6, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27383783

RESUMEN

Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single­junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases--layered two-dimensional perovskite films--have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.

2.
Proc Natl Acad Sci U S A ; 116(1): 58-66, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30563858

RESUMEN

In the fast-evolving field of halide perovskite semiconductors, the 2D perovskites (A')2(A) n-1M n X3n+1 [where A = Cs+, CH3NH3+, HC(NH2)2+; A' = ammonium cation acting as spacer; M = Ge2+, Sn2+, Pb2+; and X = Cl-, Br-, I-] have recently made a critical entry. The n value defines the thickness of the 2D layers, which controls the optical and electronic properties. The 2D perovskites have demonstrated preliminary optoelectronic device lifetime superior to their 3D counterparts. They have also attracted fundamental interest as solution-processed quantum wells with structural and physical properties tunable via chemical composition, notably by the n value defining the perovskite layer thickness. The higher members (n > 5) have not been documented, and there are important scientific questions underlying fundamental limits for n To develop and utilize these materials in technology, it is imperative to understand their thermodynamic stability, fundamental synthetic limitations, and the derived structure-function relationships. We report the effective synthesis of the highest iodide n-members yet, namely (CH3(CH2)2NH3)2(CH3NH3)5Pb6I19 (n = 6) and (CH3(CH2)2NH3)2(CH3NH3)6Pb7I22 (n = 7), and confirm the crystal structure with single-crystal X-ray diffraction, and provide indirect evidence for "(CH3(CH2)2NH3)2(CH3NH3)8Pb9I28" ("n = 9"). Direct HCl solution calorimetric measurements show the compounds with n > 7 have unfavorable enthalpies of formation (ΔHf), suggesting the formation of higher homologs to be challenging. Finally, we report preliminary n-dependent solar cell efficiency in the range of 9-12.6% in these higher n-members, highlighting the strong promise of these materials for high-performance devices.

3.
Nano Lett ; 21(14): 6245-6252, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34260259

RESUMEN

Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.

4.
Nano Lett ; 19(8): 4852-4860, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31268726

RESUMEN

Transition metal dichalcogenides (TMDCs) and two-dimensional organic and inorganic hybrid lead halide perovskites (2DPVSKs) have emerged as highly promising materials for ultralight and ultrathin optoelectronics application. They both exhibit tunability of electronic properties such as band structure, and they can form heterostructures with various types of two-dimensional materials for novel physical properties not observed in single components. However, TMDCs exhibit poor emission efficiency due to defect states and direct-to-indirect interband transition, and 2DPVSKs suffer from poor stability in ambient atmosphere. Here we report that fabrication of TMDC-on-2DPVSK heterostructures using a solvent-free process leads to novel optical transitions unique to the heterostructure which arise from the hybrid interface and exhibit a strong photoluminescence. Moreover, a two orders of magnitude enhancement of the photoluminescence as compared to WS2 emission is observed. The TMDC on top of 2DPVSK also significantly improves the stability as compared to bare 2DPVSK. Enhanced emission can be explained by electronic structure modification of TMDC by novel interfacial interactions between TMDC and 2DPVSK materials, which shows promise of the heterostructure for high efficiency and stable optoelectronic devices.

5.
J Am Chem Soc ; 141(27): 10661-10676, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246449

RESUMEN

Two-dimensional (2D) hybrid halide perovskites are promising in optoelectronic applications, particularly solar cells and light-emitting devices (LEDs), and for their increased stability as compared to 3D perovskites. Here, we report a new series of structures using propylammonium (PA+), which results in a series of Ruddlesden-Popper (RP) structures with the formula (PA)2(MA)n-1PbnI3n+1 (n = 3, 4) and a new homologous series of "step-like" (SL) structures where the PbI6 octahedra connect in a corner- and face-sharing motif with the general formula (PA)2m+4(MA)m-2Pb2m+1I7m+4 (m = 2, 3, 4). The RP structures show a blue-shift in bandgap for decreasing n (1.90 eV for n = 4 and 2.03 eV for n = 3), while the SL structures have an even greater blue-shift (2.53 eV for m = 4, 2.74 eV for m = 3, and 2.93 eV for m = 2). DFT calculations show that, while the RP structures are electronically 2D quantum wells, the SL structures are electronically 1D quantum wires with chains of corner-sharing octahedra "insulated" by blocks of face-sharing octahedra. Dark measurements for RP crystals show high resistivity perpendicular to the layers (1011 Ω cm) but a lower resistivity parallel to them (107 Ω cm). The SL crystals have varying resistivity in all three directions, confirming both RP and SL crystals' utility as anisotropic electronic materials. The RP structures show strong photoresponse, whereas the SL materials exhibit resistivity trends that are dominated by ionic transport and no photoresponse. Solar cells were made with n = 3 giving an efficiency of 7.04% (average 6.28 ± 0.65%) with negligible hysteresis.

6.
Nano Lett ; 18(9): 5603-5609, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30086221

RESUMEN

Surface states are ubiquitous to semiconductors and significantly impact the physical properties and, consequently, the performance of optoelectronic devices. Moreover, surface effects are strongly amplified in lower dimensional systems such as quantum wells and nanostructures. Layered halide perovskites (LHPs) are two-dimensional solution-processed natural quantum wells where optoelectronic properties can be tuned by varying the perovskite layer thickness n, i.e., the number of octahedra spanning the layer. They are efficient semiconductors with technologically relevant stability. Here, a generic elastic model and electronic structure modeling are applied to LHPs heterostructures with various layer thickness. We show that the relaxation of the interface strain is triggered by perovskite layers above a critical thickness. This leads to the release of the mechanical energy arising from the lattice mismatch, which nucleates the surface reorganization and may potentially induce the formation of previously observed lower energy edge states. These states, which are absent in three-dimensional perovskites are anticipated to play a crucial role in the design of LHPs for optoelectronic systems.

7.
Nano Lett ; 16(6): 3809-16, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27224519

RESUMEN

Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Here we report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI3 (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. The fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.

8.
Nat Mater ; 17(12): 1058-1059, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30470830

Asunto(s)
Molibdeno
9.
ACS Nano ; 17(24): 25459-25467, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095325

RESUMEN

We report temperature-dependent spectroscopy on the layered (n = 4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds. From simultaneously recorded time-resolved differential reflectivity (TRΔR) and time-resolved Kerr ellipticity (TRKE), a photocarrier lifetime of a few nanoseconds and a spin relaxation time on the order of picoseconds was found. This stark contrast in lifetimes clearly explains the lack of spin polarization in steady-state PL. While we observe clear temperature-dependent effects on the PL dynamics that can be related to structural dynamics, spin relaxation is nearly T-independent. Our results highlight that spin relaxation in 2D (BA)(MA)PbI occurs at time scales faster than the exciton recombination time, which poses a bottleneck for applications aiming to utilize this degree of freedom.

10.
Nat Commun ; 14(1): 3797, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365175

RESUMEN

Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t60, solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t60 under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers.

11.
Nat Nanotechnol ; 17(1): 45-52, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34811551

RESUMEN

Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I-I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device's fill factor and open-circuit voltage.

12.
J Phys Chem Lett ; 12(27): 6269-6276, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34197122

RESUMEN

Photocathodes emit electrons when illuminated, a process utilized across many technologies. Cutting-edge applications require a set of operating conditions that are not met with current photocathode materials. Meanwhile, halide perovskites have been studied extensively and have shown a lot of promise for a wide variety of optoelectronic applications. Well-documented halide perovskite properties such as inexpensive growth techniques, improved carrier mobility, low trap density, and tunable direct band gaps make them promising candidates for next-generation photocathode materials. Here, we use density functional theory to explore the possible application of pure inorganic perovskites (CsPbBr3 and CsPbI3) as photocathodes. It is determined that the addition of a Cs coating improved the performance by lowering the work function anywhere between 1.5 and 3 eV depending on the material, crystal surface, and surface coverage. A phenomenological model, modified from that developed by Gyftopoulos and Levine, is used to predict the reduction in work function with Cs coverage. The results of this work aim to guide the further experimental development of Cs-coated halide perovskites for photocathode materials.

13.
Adv Mater ; 33(29): e2007176, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34096115

RESUMEN

2D perovskites are a class of halide perovskites offering a pathway for realizing efficient and durable optoelectronic devices. However, the broad chemical phase space and lack of understanding of film formation have led to quasi-2D perovskite films with polydispersity in perovskite layer thicknesses, which have hindered device performance and stability. Here, a simple and scalable approach is reported, termed as the "phase-selective method", to fabricate 2D perovskite thin films with homogenous layer thickness (phase purity). The phase-selective method involves the dissolution of single-crystalline powders with a homogeneous perovskite layer thickness in desired solvents to fabricate thin films. In situ characterizations reveal the presence of sub-micrometer-sized seeds in solution that preserve the memory of the dissolved single crystals and dictate the nucleation and growth of grains with an identical thickness of the perovskite layers in thin films. Photovoltaic devices with a p-i-n architecture are fabricated with such films, which yield an efficiency of 17.1% enabled by an open-circuit voltage of 1.20 V, while preserving 97.5% of their peak performance after 800 h under illumination without any external thermal management.

14.
Nat Commun ; 12(1): 673, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514723

RESUMEN

Electron sources are a critical component in a wide range of applications such as electron-beam accelerator facilities, photomultipliers, and image intensifiers for night vision. We report efficient, regenerative and low-cost electron sources based on solution-processed halide perovskites thin films when they are excited with light with energy equal to or above their bandgap. We measure a quantum efficiency up to 2.2% and a lifetime of more than 25 h. Importantly, even after degradation, the electron emission can be completely regenerated to its maximum efficiency by deposition of a monolayer of Cs. The electron emission from halide perovskites can be tuned over the visible and ultraviolet spectrum, and operates at vacuum levels with pressures at least two-orders higher than in state-of-the-art semiconductor electron sources.

15.
ACS Nano ; 15(12): 20550-20561, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34882393

RESUMEN

Halide perovskites doped with magnetic impurities (such as the transition metals Mn2+, Co2+, Ni2+) are being explored for a wide range of applications beyond photovoltaics, such as spintronic devices, stable light-emitting diodes, single-photon emitters, and magneto-optical devices. However, despite several recent studies, there is no consensus on whether the doped magnetic ions will predominantly replace the octahedral B-site metal via substitution or reside at interstitial defect sites. Here, by performing correlated nanoscale X-ray microscopy, spatially and temporally resolved photoluminescence measurements, and magnetic force microscopy on the inorganic 2D perovskite Cs2PbI2Cl2, we show that doping Mn2+ into the structure results in a lattice expansion. The observed lattice expansion contrasts with the predicted contraction expected to arise from the B-site metal substitution, thus implying that Mn2+ does not replace the Pb2+ sites. Photoluminescence and electron paramagnetic resonance measurements confirm the presence of Mn2+ in the lattice, while correlated nano-XRD and X-ray fluorescence track the local strain and chemical composition. Density functional theory calculations predict that Mn2+ atoms reside at the interstitial sites between two octahedra in the triangle formed by one Cl- and two I- atoms, which results in a locally expanded structure. These measurements show the fate of the transition metal dopants, the local structure, and optical emission when they are doped at dilute concentrations into a wide band gap semiconductor.

16.
Nat Nanotechnol ; 15(12): 969-985, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33277622

RESUMEN

Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.

17.
ACS Nano ; 14(3): 3353-3364, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32073821

RESUMEN

Quasi-two-dimensional (2D) mixed-cation hybrid halide perovskites (A'2AN-1MNX3N+1; A' = large organic molecule with cationic group, A = [Cs+, CH3NH3+, HC(NH2)2+], M = [Pb, Sn, Ge], X = [I-, Br-, Cl-]) have rapidly emerged as candidates to improve the structural stability and device lifetime of 3D perovskite semiconductor devices under operating conditions. The addition of the large A' cation to the traditional AMX3 structure introduces several synthetic degrees of freedom and breaks M-X bonds, giving rise to peculiar critical phase behavior in the phase space of these complex materials. In this work, we propose a thermodynamic model parametrized by first-principles calculations to generate the phase diagram of 2D and quasi-2D perovskites (q-2DPKs) based on the mechanics and electrostatics of the interface between the A' cations and the metal halide octahedral network. Focusing on the most commonly studied methylammonium lead iodide system where A' is n-butylammonium (BA; CH3(CH2)3NH3+), we find that the apparent difficulty in synthesizing phase-pure samples with a stoichiometric index N > 5 can be attributed to the energetic competition between repulsion of opposing interfacial dipole layers and mechanical relaxation induced by interfacial stress. Our model shows quantitative agreement with experimental observations of the maximum phase-pure stoichiometric index (Ncrit) and explains the nonmonotonic evolution of the lattice parameters with increasing stoichiometric index (N). This model is generalizable to the entire family of q-2DPKs and can guide the design of photovoltaic and optical materials that combine the structural stability of the q-2DPKs while retaining the charge carrier properties of their 3D counterparts.

18.
ACS Appl Mater Interfaces ; 12(5): 6633-6640, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916736

RESUMEN

Nickel oxide (NiO) is a commonly used contact material for a variety of thin-film optoelectronic technologies based on organic or hybrid materials. In such setups, interfaces play a crucial role as they can reduce, if not kill, the device performances by bringing additional traps or energy barriers, hindering the extraction of charge carriers from the active layer. Here, we computationally examine a prototype halide perovskite architecture, NiO/MAPbI3 (MA = CH3NH3+), that has shown excellent photovoltaic performance and, in particular, a large open-circuit voltage. We show that efficient hole collection is achieved only when considering the role of vacancies induced by standard material deposition techniques. Specifically, Ni vacancies lead to nearly perfect valence band energy level alignment between the active layer and the contact material. Finally, we show how Li doping greatly improves the performances of the device and further propose alternative dopants. Our results suggest the high tunability of NiO interfaces for the design of optimized optoelectronic devices far beyond that of halide perovskites.

19.
Nat Commun ; 9(1): 2130, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849026

RESUMEN

State-of-the-art quantum-well-based devices such as photovoltaics, photodetectors, and light-emission devices are enabled by understanding the nature and the exact mechanism of electronic charge transport. Ruddlesden-Popper phase halide perovskites are two-dimensional solution-processed quantum wells and have recently emerged as highly efficient semiconductors for solar cell approaching 14% in power conversion efficiency. However, further improvements will require an understanding of the charge transport mechanisms, which are currently unknown and further complicated by the presence of strongly bound excitons. Here, we unambiguously determine that dominant photocurrent collection is through electric field-assisted electron-hole pair separation and transport across the potential barriers. This is revealed by in-depth device characterization, coupled with comprehensive device modeling, which can self-consistently reproduce our experimental findings. These findings establish the fundamental guidelines for the molecular and device design for layered 2D perovskite-based photovoltaics and optoelectronic devices, and are relevant for other similar quantum-confined systems.

20.
ACS Nano ; 12(4): 3321-3332, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29481060

RESUMEN

Layered hybrid organic-inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers' confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignments becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Thus, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA