Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(20): 6746-58, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828630

RESUMEN

Thalamus is a potent driver of cortical activity even though cortical synapses onto excitatory layer 4 neurons outnumber thalamic synapses 10 to 1. Previous in vitro studies have proposed that thalamocortical (TC) synapses are stronger than corticocortical (CC) synapses. Here, we investigated possible anatomical and physiological differences between these inputs in the rat in vivo. We developed a high-throughput light microscopy method, validated by electron microscopy, to completely map the locations of synapses across an entire dendritic tree. This demonstrated that TC synapses are slightly more proximal to the soma than CC synapses, but detailed compartmental modeling predicted that dendritic filtering does not appreciably favor one synaptic class over another. Measurements of synaptic strength in intact animals confirmed that both TC and CC synapses are weak and approximately equivalent. We conclude that thalamic effectiveness does not rely on enhanced TC strength, but rather on coincident activation of converging inputs.


Asunto(s)
Corteza Cerebral/fisiología , Dendritas/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Espinas Dendríticas/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
2.
PLoS Biol ; 9(2): e1001013, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21346800

RESUMEN

The function of neuronal networks relies on selective assembly of synaptic connections during development. We examined how synaptic specificity emerges in the pontocerebellar projection. Analysis of axon-target interactions with correlated light-electron microscopy revealed that developing pontine mossy fibers elaborate extensive cell-cell contacts and synaptic connections with Purkinje cells, an inappropriate target. Subsequently, mossy fiber-Purkinje cell connections are eliminated resulting in granule cell-specific mossy fiber connectivity as observed in mature cerebellar circuits. Formation of mossy fiber-Purkinje cell contacts is negatively regulated by Purkinje cell-derived BMP4. BMP4 limits mossy fiber growth in vitro and Purkinje cell-specific ablation of BMP4 in mice results in exuberant mossy fiber-Purkinje cell interactions. These findings demonstrate that synaptic specificity in the pontocerebellar projection is achieved through a stepwise mechanism that entails transient innervation of Purkinje cells, followed by synapse elimination. Moreover, this work establishes BMP4 as a retrograde signal that regulates the axon-target interactions during development.


Asunto(s)
Axones/fisiología , Comunicación Celular/fisiología , Red Nerviosa/fisiología , Animales , Axones/ultraestructura , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/fisiología , Cerebelo/embriología , Cerebelo/fisiología , Cerebelo/ultraestructura , Ratones , Red Nerviosa/embriología , Células de Purkinje/fisiología , Células de Purkinje/ultraestructura , Transmisión Sináptica/fisiología
3.
Proc Natl Acad Sci U S A ; 108(49): E1349-58, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22049344

RESUMEN

Carefully designed animal models of genetic risk factors are likely to aid our understanding of the pathogenesis of schizophrenia. Here, we study a mouse strain with a truncating lesion in the endogenous Disc1 ortholog designed to model the effects of a schizophrenia-predisposing mutation and offer a detailed account of the consequences that this mutation has on the development and function of a hippocampal circuit. We uncover widespread and cumulative cytoarchitectural alterations in the dentate gyrus during neonatal and adult neurogenesis, which include errors in axonal targeting and are accompanied by changes in short-term plasticity at the mossy fiber/CA3 circuit. We also provide evidence that cAMP levels are elevated as a result of the Disc1 mutation, leading to altered axonal targeting and dendritic growth. The identified structural alterations are, for the most part, not consistent with the growth-promoting and premature maturation effects inferred from previous RNAi-based Disc1 knockdown. Our results provide support to the notion that modest disturbances of neuronal connectivity and accompanying deficits in short-term synaptic dynamics is a general feature of schizophrenia-predisposing mutations.


Asunto(s)
Axones/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Potenciales de Acción , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Inmunohistoquímica , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Musgosas del Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp
4.
Curr Biol ; 17(11): 911-21, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17493809

RESUMEN

BACKGROUND: Activity-dependent competition that operates on branch stability or formation plays a critical role in shaping the pattern and complexity of axonal terminal arbors. In the mammalian central nervous system (CNS), the effect of activity-dependent competition on axon arborization and on the assembly of sensory maps is well established. However, the molecular pathways that modulate axonal-branch stability or formation in competitive environments remain unknown. RESULTS: We establish an in vivo axonal-competition paradigm in the mouse olfactory system by employing a genetic strategy that permits suppression of neurosecretory activity in random subsets of olfactory sensory neurons (OSNs). Long-term follow up confirmed that this genetic manipulation triggers competition by revealing a bias toward selective stabilization of active arbors and local degeneration of synaptically silent ones. By using a battery of genetically modified mouse models, we demonstrate that a decrease either in the total levels or the levels of activity-dependent secreted BDNF (due to a val66met substitution), rescues silent arbors from withering. We show that this effect may be mediated, at least in part, by p75(NTR). CONCLUSIONS: We establish and experimentally validate a genetic in vivo axonal-competition paradigm in the mammalian CNS. By using this paradigm, we provide evidence for a specific effect of BDNF signaling on terminal-arbor pruning under competition in vivo. Our results have implications for the formation and refinement of the olfactory and other sensory maps, as well as for neuropsychiatric diseases and traits modulated by the BDNF val66met variant.


Asunto(s)
Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal/genética , Sustitución de Aminoácidos , Animales , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Ratones Transgénicos , Neuronas Aferentes/fisiología , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Olfato/genética , Olfato/fisiología
5.
Neuron ; 38(5): 773-84, 2003 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-12797961

RESUMEN

The rapid motility of axonal filopodia and dendritic spines is prevalent throughout the developing CNS, although the function of this motility remains controversial. Using two-photon microscopy, we imaged hippocampal mossy fiber axons in slice cultures and discovered that filopodial extensions are highly motile. Axonal filopodial motility is actin based and is downregulated with development, although it remains in mature cultures. This motility is correlated with free extracellular space yet is inversely correlated with contact with postsynaptic targets, indicating a potential role in synaptogenesis. Filopodial motility is differentially regulated by kainate receptors: synaptic stimulation of kainate receptors enhances motility in younger slices, but it inhibits it in mature slices. We propose that neuronal activity controls filopodial motility in a developmentally regulated manner, in order to establish synaptic contacts in a two-step process. A two-step model of synaptogenesis can also explain the opposite effects of neuronal activity on the motility of dendritic protrusions.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Ácido Glutámico/metabolismo , Conos de Crecimiento/metabolismo , Fibras Musgosas del Hipocampo/crecimiento & desarrollo , Seudópodos/metabolismo , Receptores de Ácido Kaínico/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Animales Recién Nacidos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Estimulación Eléctrica , Agonistas de Aminoácidos Excitadores/farmacología , Espacio Extracelular/metabolismo , Ácido Glutámico/farmacología , Conos de Crecimiento/ultraestructura , Ratones , Microscopía Electrónica , Fibras Musgosas del Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/ultraestructura , Técnicas de Cultivo de Órganos , Seudópodos/ultraestructura , Receptores de Ácido Kaínico/antagonistas & inhibidores , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
6.
Neuron ; 97(3): 538-554.e5, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29395908

RESUMEN

In vertebrates and invertebrates, neurons and glia are generated in a stereotyped manner from neural stem cells, but the purpose of invariant lineages is not understood. We show that two stem cells that produce leg motor neurons in Drosophila also generate neuropil glia, which wrap and send processes into the neuropil where motor neuron dendrites arborize. The development of the neuropil glia and leg motor neurons is highly coordinated. However, although motor neurons have a stereotyped birth order and transcription factor code, the number and individual morphologies of the glia born from these lineages are highly plastic, yet the final structure they contribute to is highly stereotyped. We suggest that the shared lineages of these two cell types facilitate the assembly of complex neural circuits and that the two birth order strategies-hardwired for motor neurons and flexible for glia-are important for robust nervous system development, homeostasis, and evolution.


Asunto(s)
Astrocitos/fisiología , Linaje de la Célula , Drosophila melanogaster/embriología , Neuronas Motoras/fisiología , Neurópilo/fisiología , Animales , Animales Modificados Genéticamente , Extremidades/embriología
7.
J Comp Neurol ; 524(18): 3696-3716, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27097562

RESUMEN

In the developing murine eye, melanin synthesis in the retinal pigment epithelium (RPE) coincides with neurogenesis of retinal ganglion cells (RGCs). Disruption of pigmentation in the albino RPE is associated with delayed neurogenesis in the ventrotemporal retina, the source of ipsilateral RGCs, and a reduced ipsilateral RGC projection. To begin to unravel how melanogenesis and the RPE regulate RGC neurogenesis and cell subpopulation specification, we compared the features of albino and pigmented mouse RPE cells during the period of RGC neurogenesis (embryonic day, E, 12.5 to 18.5) when the RPE is closely apposed to developing RGC precursors. At E12.5 and E15.5, although albino and pigmented RPE cells express RPE markers Otx2 and Mitf similarly, albino RPE cells are irregularly shaped and have fewer melanosomes compared with pigmented RPE cells. The adherens junction protein P-cadherin appears loosely distributed within the albino RPE cells rather than tightly localized on the cell membrane, as in pigmented RPE. Connexin 43 (gap junction protein) is expressed in pigmented and albino RPE cells at E13.5 but at E15.5 albino RPE cells have fewer small connexin 43 puncta, and a larger fraction of phosphorylated connexin 43 at serine 368. These results suggest that the lack of pigment in the RPE results in impaired RPE cell integrity and communication via gap junctions between RPE and neural retina during RGC neurogenesis. Our findings should pave the way for further investigation of the role of RPE in regulating RGC development toward achieving proper RGC axon decussation. J. Comp. Neurol. 524:3696-3716, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Albinismo/metabolismo , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/metabolismo , Albinismo/patología , Animales , Western Blotting , Conexina 43/metabolismo , Inmunohistoquímica , Melanosomas/metabolismo , Melanosomas/ultraestructura , Ratones Transgénicos , Microscopía Electrónica , Modelos Animales , Fosforilación , Epitelio Pigmentado de la Retina/patología
8.
Neuron ; 73(1): 79-91, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22243748

RESUMEN

Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are noncontacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance.


Asunto(s)
Tipificación del Cuerpo/fisiología , Dendritas/fisiología , Integrinas/metabolismo , Células Receptoras Sensoriales/citología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Dendritas/ultraestructura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epidérmicas , Epidermis/fisiología , Epidermis/ultraestructura , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Peroxidasa de Rábano Silvestre/metabolismo , Integrinas/genética , Larva , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Biológicos , Morfogénesis , Órganos de los Sentidos/citología , Células Receptoras Sensoriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA