RESUMEN
Extraordinary abilities for continuous proliferation and differentiation, associated with constant renewal triggered by stimulation from the mastication process, together with the relative lack of aesthetic complications associated with post-surgery healing, have highlighted buccal pouch mucosa as a potential source of explants that could be used in transplantation and tissue engineering. Additionally, this tissue plays a major role in the oral drug delivery process, which brings special interest to its molecular properties in the context of new drug development. There is therefore a need to analyse the exact mechanisms of oral mucosa functioning, especially when it comes to the processes that are associated with the potential clinical applications. In this study we analysed a complete transcriptome of long-term in vitro cultures of porcine buccal pouch oral mucosa cells. Using a microarray approach, we focused on genes associated with cellular metabolic processes, signalling and adhesion, from 4 gene ontology groups: "Positive regulation of cellular component movement", "Positive regulation of cellular process", "Positive regulation of intracellular signal transduction" and "Single organism cell adhesion". Nineteen genes (CCL8, CXCL2, PLK2, DUSP5, PTGS2, LIF, CCL2, ATP1B1, REL, ITGB3, SCARB1, UGCG, PDPN, LYN, ETS1, FCER1G, TGFB1, RFC4, LMO2) with fold changes higher than |2| and p value Extraordinary abilities for continuous proliferation and differentiation, associated with constant renewal triggered by stimulation from the mastication process, together with the relative lack of aesthetic complications associated with post-surgery healing, have highlighted buccal pouch mucosa as a potential source of explants that could be used in transplantation and tissue engineering. Additionally, this tissue plays a major role in the oral drug delivery process, which brings special interest to its molecular properties in the context of new drug development. There is therefore a need to analyse the exact mechanisms of oral mucosa functioning, especially when it comes to the processes that are associated with the potential clinical applications. In this study we analysed a complete transcriptome of long-term in vitro cultures of porcine buccal pouch oral mucosa cells. Using a microarray approach, we focused on genes associated with cellular metabolic processes, signalling and adhesion, from 4 gene ontology groups: "Positive regulation of cellular component movement", "Positive regulation of cellular process", "Positive regulation of intracellular signal transduction" and "Single organism cell adhesion". Nineteen genes (CCL8, CXCL2, PLK2, DUSP5, PTGS2, LIF, CCL2, ATP1B1, REL, ITGB3, SCARB1, UGCG, PDPN, LYN, ETS1, FCER1G, TGFB1, RFC4, LMO2) with fold changes higher than |2| and p value less than 0.05 were identified, described in context and analysed. While the study needs much further validation to become applicable in a clinical environment, it yields valuable information about the transcriptomic basis of oral mucosal cell functioning in vitro, that might serve as a reference for further research, aiming to apply this knowledge in clinical situations.0.05 were identified, described in context and analysed. While the study needs much further validation to become applicable in a clinical environment, it yields valuable information about the transcriptomic basis of oral mucosal cell functioning in vitro, that might serve as a reference for further research, aiming to apply this knowledge in clinical situations.