RESUMEN
Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (TFH cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting TFH cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust TFH cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of TFH cell differentiation and a promising target for TFH cell-skewing vaccine adjuvants.
Asunto(s)
Activación de Linfocitos/inmunología , Viabilidad Microbiana/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Receptor Toll-Like 8/inmunología , Vacunas Atenuadas/inmunología , Adulto , Animales , Formación de Anticuerpos/inmunología , Diferenciación Celular/inmunología , Femenino , Humanos , Masculino , PorcinosRESUMEN
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Ratones , Subtipo H5N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Pollos/metabolismo , Hurones , Virus de la Influenza A/metabolismo , Mutación , Gripe Humana/genéticaRESUMEN
Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.
Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Pollos/metabolismo , Virulencia , Proteínas Virales/metabolismo , Virus de la Influenza A/metabolismo , Factores de Virulencia/genética , MamíferosRESUMEN
Pancreatic cancer is the 8th most common cause of cancer-related deaths worldwide and the tumor with the poorest prognosis of all solid malignancies. In 1957, it was discovered that Newcastle disease virus (NDV) has oncolytic properties on tumor cells. To study the oncolytic properties of NDV in pancreatic cancer a single dose was administered intravenously in a syngeneic orthotopic tumor model using two different murine pancreatic adenocarcinoma cell lines (DT6606PDA, Panc02). Tumor growth was monitored and immune response was analyzed. A single treatment with NDV inhibited DT6606PDA tumor growth in mice and prevented recurrence for a period of three months. Tumor infiltration and systemic activation of NK cells, cytotoxic and helper T-cells was enhanced. NDV-induced melting of Panc02 tumors until d7 pi, but they recurred displaying unrestricted tumor growth, low immunogenicity and inhibition of tumor-specific immune response. Arrest of DT6606PDA tumor growth and rejection was mediated by activation of NK cells and a specific antitumor immune response via T-cells. Panc02 tumors rapidly decreased until d7 pi, but henceforth tumors characterized by the ability to perform immune-regulatory functions reappeared. Our results demonstrated that NDV-activated immune cells are able to reject tumors provided that an adaptive antitumor immune response can be initiated. However, activated NK cells that are abundant in Panc02 tumors lead to outgrowth of nonimmunogenic tumor cells with inhibitory properties. Our study emphasizes the importance of an adaptive immune response, which is initiated by NDV to mediate long-term tumor surveillance in addition to direct oncolysis.
Asunto(s)
Inmunidad Adaptativa , Recurrencia Local de Neoplasia/prevención & control , Virus de la Enfermedad de Newcastle/inmunología , Virus Oncolíticos/inmunología , Neoplasias Pancreáticas/inmunología , Animales , Línea Celular Tumoral , Humanos , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Ratones , Viroterapia Oncolítica , Neoplasias Pancreáticas/patología , Linfocitos T Colaboradores-Inductores/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Classical swine fever (CSF) is one of the most important viral diseases of pigs. Clinical signs may vary from almost inapparent infection to a hemorrhagic fever like illness. Among the host factors leading to different disease courses are age, breed, and immune status. The aim of this study was to compare host responses of different pig breeds upon infection with a recent moderately virulent CSF virus (CSFV) strain, and to assess their impact on the clinical outcome and the efficiency of immune responses. To this means, two domestic pig types (German Landrace and hybrids), were compared to European wild boar. Along with clinical and pathological assessments and routine virological and serological methods, kinetics of immune-cellular parameters were evaluated. FINDINGS: All animals were susceptible to infection and despite clinical differences, virus could be detected in all infected animals to similar amounts. All but one animal developed an acute disease course, two landrace animals recovered after a transient infection. One wild boar got chronically infected. Changes in the percentages of lymphocyte subsets in peripheral blood did not show a clear correlation with the clinical outcome. High and early titers of neutralizing antibodies were especially detected in wild boar and German Landrace pigs. CONCLUSIONS: While differences among breeds did not have the expected impact on course and outcome of CSFV infection, preload with facultative pathogens and even small differences in age seemed to be more relevant. Future studies will target the characterization of responses observed during different disease courses including cytokine reactions and further analyses of lymphocyte subsets.
Asunto(s)
Virus de la Fiebre Porcina Clásica/inmunología , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/virología , Interacciones Huésped-Patógeno/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Virus de la Fiebre Porcina Clásica/patogenicidad , Fenotipo , Sus scrofa , Porcinos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , VirulenciaRESUMEN
BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important infectious agents for the swine industry worldwide. Zinc (Zn) salts, which are widely used as a dietary supplement in swine nutrition, have shown antiviral effects in vitro as well as in vivo. The purpose of this study was to determine the influence of dietary zinc oxide supplementation on vaccination and challenge infection with PRRSV. FINDINGS: The clinical course of PRRS and the success of vaccination with an experimental inactivated vaccine were compared between animals receiving a conventional diet (50 ppm Zn, control group) and diets supplemented with Zn oxide (ZnO) at final Zn concentrations of 150 or 2,500 ppm. Pigs receiving higher dietary Zn levels showed a tendency towards higher neutralizing antibody levels after infection, while dietary Zn levels did not substantially influence the number of antiviral IFN-gamma secreting cells (IFN-gamma-SC) or percentages of blood immune cell subsets after infection. Finally, feeding higher dietary Zn levels reduced neither clinical symptoms nor viral loads. CONCLUSIONS: Our results suggest that higher levels of dietary ZnO do not have the potential to stimulate or modulate systemic immune responses after vaccination and heterologous PRRSV infection to an extent that could improve the clinical and virological outcome.
Asunto(s)
Suplementos Dietéticos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Óxido de Zinc/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Temperatura Corporal , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Vacunación , Carga Viral , Vacunas Virales/inmunologíaRESUMEN
Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.
Asunto(s)
Apoptosis , Gripe Aviar , Proteínas Virales , Replicación Viral , Animales , Gripe Aviar/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Línea Celular , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Aves/virología , Pollos , VirulenciaRESUMEN
Classical swine fever virus (CSFV) C-strain "Riems" escape variants generated under selective antibody pressure with monoclonal antibodies and a peptide-specific antiserum in cell culture were investigated. Candidates with up to three amino acid exchanges in the immunodominant and highly conserved linear TAV-epitope of the E2-glycoprotein, and additional mutations in the envelope proteins ERNS and E1, were characterized both in vitro and in vivo.It was further demonstrated, that intramuscular immunization of weaner pigs with variants selected after a series of passages elicited full protection against lethal CSFV challenge infection. These novel CSFV C-strain variants with exchanges in the TAV-epitope present potential marker vaccine candidates. The DIVA (differentiating infected from vaccinated animals) principle was tested for those variants using commercially available E2 antibody detection ELISA. Moreover, direct virus differentiation is possible using a real-time RT-PCR system specific for the new C-strain virus escape variants or using differential immunofluorescence staining.
Asunto(s)
Antígenos Virales/inmunología , Virus de la Fiebre Porcina Clásica/inmunología , Peste Porcina Clásica/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/inmunología , Animales , Anticuerpos Antivirales/análisis , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Análisis de Secuencia de Proteína/veterinaria , Porcinos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunologíaRESUMEN
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV.
RESUMEN
Herpes simplex encephalitis (HSE) is one of the most serious diseases of the nervous system in humans. However, its pathogenesis is still only poorly understood. Although several mouse models of predominantly herpes simplex virus 1 (HSV-1) infections mimic different crucial aspects of HSE, central questions remain unanswered. They comprise the specific temporofrontal tropism, viral spread within the central nervous system (CNS), as well as potential molecular and immunological barriers that drive virus into latency while only rarely resulting in severe HSE. We have recently proposed an alternative mouse model by using a pseudorabies virus (PrV) mutant that more faithfully represents the striking features of human HSE: temporofrontal meningoencephalitis with few severely, but generally only moderately to subclinically affected mice as well as characteristic behavioral abnormalities. Here, we characterized this animal model using 6- to 8-week-old female CD-1 mice in more detail. Long-term investigation over 6 months consistently revealed a biphasic course of infection accompanied by recurring clinical signs including behavioral alterations and mainly mild meningoencephalitis restricted to the temporal and frontal lobes. By histopathological and immunological analyses, we followed the kinetics and spatial distribution of inflammatory lesions as well as the underlying cytokine expression in the CNS over 21 days within the acute phase of infection. Affecting the temporal lobes, the inflammatory infiltrate was composed of lymphocytes and macrophages showing a predominantly lymphocytic shift 15 days after infection. A strong increase was observed in cytokines CXCL10, CCL2, CCL5, and CXCL1 recruiting inflammatory cells to the CNS. Unlike the majority of infected mice, strongly affected animals demonstrated extensive temporal lobe edema, which is typically present in severe human HSE cases. In summary, these results support the validity of our animal model for in-depth investigation of HSE pathogenesis.
Asunto(s)
Encefalitis por Herpes Simple , Meningoencefalitis , Animales , Sistema Nervioso Central/patología , Citocinas , Modelos Animales de Enfermedad , Encefalitis por Herpes Simple/diagnóstico , Encefalitis por Herpes Simple/patología , Femenino , Humanos , Ratones , NeuropatologíaRESUMEN
Streptococcus pneumoniae (S. pneumoniae)infections are the leading cause of child mortality globally. Currentvaccines fail to induceaprotective immune response towards a conserved part of the pathogen,resulting in newserotypescausing disease. Therefore, new vaccinestrategies are urgently needed.Described is atwo-pronged approach combiningS. pneumoniaeproteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA),with aprecisely defined synthetic oligosaccharide,wherebythe carrier protein actsas a serotype-independent antigen to provideadditional protection. Proof of concept in mice and swine modelsrevealed thatthe conjugatesinhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model.Acombination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.
Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas , Glicoconjugados , Ratones , Vacunas Neumococicas , Serogrupo , PorcinosRESUMEN
African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain "Kenya1033". The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro.
Asunto(s)
Virus de la Fiebre Porcina Africana , Macrófagos/virología , Proteoma/metabolismo , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Animales , Línea Celular , Porcinos , Proteínas Virales , Replicación ViralRESUMEN
Infection with African swine fever virus (ASFV) causes a highly lethal haemorrhagic disease in domestic and Eurasian wild pigs. Thus, it is a major threat to pig populations worldwide and a cause of substantial economic losses. Recently, less virulent ASFV strains emerged naturally, which showed higher experimental virulence in wild boar than in domestic pigs. The reason for this difference in disease progression and outcome is unclear but likely involves different immunological responses. Unfortunately, besides the importance of CD8α+ lymphocytes, little is known about the immune responses against ASFV in suids. Against this background, we used a multicolour flow cytometry platform to investigate the T-cell responses in wild boar and domestic pigs after infection with the moderately virulent ASFV strain 'Estonia2014' in two independent trials. CD4- /CD8α+ and CD4+ /CD8α+ αß T-cell frequencies increased in both subspecies in various tissues, but CD8α+ γδ T cells differentiated and responded in wild boar only. Proliferation in CD8α+ T cells was found 10 days post infectionem only. Frequencies of T-bet+ T cells increased in wild boar but not in domestic pigs. Of note, we found a considerable loss of perforin expression in cytotoxic T cells, 5 and 7 dpi. Both subspecies established a regulatory T-cell response 10 dpi. In domestic pigs, we show increasing levels of ICOS+ and CD8α+ invariant Natural Killer T cells. These disparities in T-cell responses might explain some of the differences in disease progression in wild boar and domestic pigs and should pave the way for future studies.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Linfocitos T , Animales , Sus scrofa , Porcinos , VirulenciaRESUMEN
Avian influenza viruses (AIV) H5N8 clade 2.3.4.4 pose a public health threat but the viral factors relevant for its potential adaptation to mammals are largely unknown. The non-structural protein 1 (NS1) of influenza viruses is an essential interferon antagonist. It commonly consists of 230 amino acids, but variations in the disordered C-terminus resulted in truncation or extension of NS1 with a possible impact on virus fitness in mammals. Here, we analysed NS1 sequences from 1902 to 2020 representing human influenza viruses (hIAV) as well as AIV in birds, humans and other mammals and with an emphasis on the panzootic AIV subtype H5N8 clade 2.3.4.4A (H5N8-A) from 2013 to 2015 and clade 2.3.4.4B (H5N8-B) since 2016. We found a high degree of prevalence for short NS1 sequences among hIAV, zoonotic AIV and H5N8-B, while AIV and H5N8-A had longer NS1 sequences. We assessed the fitness of recombinant H5N8-A and H5N8-B viruses carrying NS1 proteins with different lengths in human cells and in mice. H5N8-B with a short NS1, similar to hIAV or AIV from a human or other mammal-origins, was more efficient at blocking apoptosis and interferon-induction without a significant impact on virus replication in human cells. In mice, shortening of the NS1 of H5N8-A increased virus virulence, while the extension of NS1 of H5N8-B reduced virus virulence and replication. Taken together, we have described the biological impact of variation in the NS1 C-terminus in hIAV and AIV and shown that this affects virus fitness in vitro and in vivo.
Asunto(s)
Aptitud Genética , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Células A549 , Animales , Células Cultivadas , Pollos , Perros , Patos/virología , Femenino , Células HEK293 , Humanos , Subtipo H5N8 del Virus de la Influenza A/química , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Virus Reordenados/patogenicidad , Turquía , Proteínas no Estructurales Virales/química , Replicación ViralRESUMEN
The introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected. This review summarizes the currently available knowledge on ASF in wild boar in Europe. The current ASF panzootic is characterized by self-sustaining cycles of infection in the wild boar population. Spill-over and spill-back events occur from wild boar to domestic pigs and vice versa. The social structure of wild boar populations and the spatial behavior of the animals, a variety of ASF virus (ASFV) transmission mechanisms and persistence in the environment complicate the modeling of the disease. Control measures focus on the detection and removal of wild boar carcasses, in which ASFV can remain infectious for months. Further measures include the reduction in wild boar density and the limitation of wild boar movements through fences. Using these measures, the Czech Republic and Belgium succeeded in eliminating ASF in their territories, while the disease spread in others. So far, no vaccine is available to protect wild boar or domestic pigs reliably against ASF.
Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/epidemiología , Sus scrofa/virología , Virus de la Fiebre Porcina Africana/genética , Animales , Brotes de Enfermedades , Europa (Continente)/epidemiología , PorcinosRESUMEN
Seasonal Influenza A virus (IAV) infections can promote dissemination of upper respiratory tract commensals such as Streptococcus pneumoniae to the lower respiratory tract resulting in severe life-threatening pneumonia. Here, we aimed to compare innate immune responses in the lungs of healthy colonized and non-colonized mice after IAV challenge at the initial asymptomatic stage of infection. Responses during a severe bacterial pneumonia were profiled for comparison. Cytokine and innate immune cell imprints of the lungs were analyzed. Irrespective of the colonization status, mild H1N1 IAV infection was characterized by a bi-phasic disease progression resulting in full recovery of the animals. Already at the asymptomatic stage of viral infection, the pro-inflammatory cytokine response was as high as in pneumococcal pneumonia. Flow cytometry analyses revealed an early influx of inflammatory monocytes into the lungs. Neutrophil influx was mostly limited to bacterial infections. The majority of cells, except monocytes, displayed an activated phenotype characterized by elevated CCR2 and MHCII expression. In conclusion, we show that IAV challenge of colonized healthy mice does not automatically result in severe co-infection. However, a general local inflammatory response was noted at the asymptomatic stage of infection irrespective of the infection type.
Asunto(s)
Inmunidad Innata/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones Neumocócicas/inmunología , Animales , Portador Sano/inmunología , Coinfección/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Infecciones por Orthomyxoviridae/virología , Infecciones Neumocócicas/complicaciones , Neumonía Bacteriana , Neumonía Neumocócica/inmunología , Cultivo Primario de Células , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Streptococcus pneumoniae/patogenicidadRESUMEN
Infectious laryngotracheitis is an important respiratory disease of chickens that is caused by an alphaherpesvirus [infectious laryngotracheitis virus (ILTV); Gallid herpesvirus 1]. As herpesvirus envelope glycoproteins are main targets of the humoral host immune response, they are of particular interest for development of vaccines, as well as of diagnostic tools. The conserved, N-glycosylated envelope protein gC has been identified as a major surface antigen of ILTV. To study the function of gC, we now isolated a gC-deleted ILTV recombinant as well as a gC rescuant after co-transfection of permissive chicken cells with virion DNA and transfer plasmids containing engineered subgenomic fragments. Like other alphaherpesvirus homologues, ILTV gC proved to be non-essential for replication. ILTV-DeltagC exhibited delayed penetration kinetics and slightly reduced plaque sizes in cultured chicken cells, whereas virus titres were not reduced significantly compared with wild-type or gC-rescued virus. In vivo studies revealed that ILTV-DeltagC is attenuated in chickens. However, infection with high doses of ILTV-DeltagC was still fatal for approximately 20 % of the animals, whereas wild-type or gC-rescued ILTV led to 50 % mortality. Interestingly, innate and specific immune responses against ILTV-DeltagC were not reduced but enhanced, and surviving chickens were protected completely against challenge infection. Furthermore, ILTV-DeltagC might serve as a basis for marker vaccines permitting differentiation between vaccinated and field-virus-infected animals, as gC-specific antibodies could be detected easily in sera of animals infected with wild-type ILTV.
Asunto(s)
Herpesvirus Gallináceo 1/fisiología , Proteínas del Envoltorio Viral/fisiología , Animales , Pollos , Genoma Viral , Herpesvirus Gallináceo 1/genética , Herpesvirus Gallináceo 1/inmunología , Herpesvirus Gallináceo 1/patogenicidad , Proteínas del Envoltorio Viral/inmunología , Virulencia , Internalización del Virus , Replicación ViralRESUMEN
The development of immunocompetence in chicks after hatching is not fully understood. However, detailed knowledge of immunocompetence and maturation processes in day-old chicks (DOCs) and juvenile chickens (Gallus gallus domesticus) is necessary to implement enhanced immunization strategies. For viral diseases, this especially includes the development of cellular immunity focusing on T-cell-dependent responses. In the current study, we investigated T-cell subsets in blood and lymphoid tissues of 1-to-21-day-old chickens concerning their cellular composition and localization. We detected an increase of T-cell frequencies in blood and spleen and a shift of the CD8α dimer expression toward a CD8αß expression on the surface of T cells with increasing age. A relocalization of lymphocytes into antigen presentation structures within the spleen was affirmed. In addition, changes in basal messenger RNA (mRNA) level, with increasing IL2 and IFNγ mRNA levels at different ages were measured. These detected changes suggest an improved T-cell-dependent antiviral response with increasing age in chickens. To confirm this finding on a functional level, we conducted a transfer experiment: adult and, as a negative control, neonatal naïve lymphocytes were transferred into DOCs. Afterward, the protection induced by these transferred cells was verified by a sublethal infection by using a highly pathogenic avian influenza virus with neuraminidase deletion, H5Ndel. Previous experiments have shown that adult animals survive infection with this virus strain, while naïve DOCs show severe symptoms or even die. As a result, the transfer of adult, but not neonatal lymphocytes, confers protection to DOCs against the infection, demonstrating functional differences in lymphocytes from chicks of different ages. Collectively, these data reveal the inability of chicks to mount an effective, cellular antiviral response in the first 3 wk of life. Therefore, we propose that the observed maturation of both the innate and the adaptive arms of the immune system early in development is mandatory for controlling influenza infection in chickens, as well as for an effective vaccination with replication-competent viral vaccine strains.
Asunto(s)
Sangre/inmunología , Pollos/inmunología , Inmunidad Celular , Inmunocompetencia , Subtipo H5N1 del Virus de la Influenza A/inmunología , Tejido Linfoide/inmunología , Linfocitos T/fisiología , Factores de Edad , Animales , Femenino , MasculinoRESUMEN
Endemically infected European wild boar are considered a major reservoir of African swine fever virus in Europe. While high lethality was observed in the majority of field cases, strains of moderate virulence occurred in the Baltic States. One of these, "Estonia 2014", led to a higher number of clinically healthy, antibody-positive animals in the hunting bag of North-Eastern Estonia. Experimental characterization showed high virulence in wild boar but moderate virulence in domestic pigs. Putative pathogenic differences between wild boar and domestic pigs are unresolved and comparative pathological studies are limited. We here report on a kinetic experiment in both subspecies. Three animals each were euthanized at 4, 7, and 10 days post infection (dpi). Clinical data confirmed higher virulence in wild boar although macroscopy and viral genome load in blood and tissues were comparable in both subspecies. The percentage of viral antigen positive myeloid cells tested by flow cytometry did not differ significantly in most tissues. Only immunohistochemistry revealed consistently higher viral antigen loads in wild boar tissues in particular 7 dpi, whereas domestic pigs already eliminated the virus. The moderate virulence in domestic pigs could be explained by a more effective viral clearance.
RESUMEN
Since African swine fever (ASF) first appeared in the Caucasus region in 2007, it has spread rapidly and is now present in numerous European and Asian countries. In Europe, mainly wild boar populations are affected and pose a risk for domestic pigs. In Asia, domestic pigs are almost exclusively affected. An effective and safe vaccine is not available, and correlates of protection are far from being understood. Therefore, research on immune responses, immune dysfunction and pathogenesis is mandatory. It is acknowledged that T cells play a pivotal role. Thus, we investigated T-cell responses of domestic pigs and wild boar upon infection with the highly virulent ASF virus (ASFV) strain 'Armenia08'. For this purpose, we used a flow cytometry-based multicolour analysis to identify T-cell subtypes (cytotoxic T cells, T-helper cells, γδ T cells) and their functional impairment in ASFV-infected pigs. Domestic pigs showed lymphopaenia, and neither in the blood nor in the lymphoid organs was a proliferation of CD8+ effector cells observed. Furthermore, a T-bet-dependent activation of the remaining CD8 T cells did not occur. In contrast, a T-cell response could be observed in wild boar at 5 days post-inoculation in the blood and in tendency also in some organs. However, this cytotoxic response was not beneficial as all wild boars showed a severe acute lethal disease and a higher proportion died spontaneously or was euthanized at the humane endpoint.