RESUMEN
The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222, a stable Zr-based MOF made from Ni(TCPP) with natural vacancies, has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298â K. No degradation of the crystalline structure of PCN-222 was observed. At 1â atm, the adsorbed CO(g) volumes measured for the best materials were 12.15â cm3 g-1 and 14.01â cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption.
RESUMEN
In this paper, we present how complementary characterization techniques, such as electrical measurements with a vector network analyzer (VNA), optical measurements with a laser Doppler vibrometer (LDV), and numerical simulations with the finite element method, coupled with spectral domain analysis (FEMSDA), allow us to independently access different properties of a SAW device and fully characterize its operation using the coupling-of-modes theory (COM). A set of chemical SAW sensors coated with parylene C layers of different thicknesses (1, 1.5, and 2 µm) and an uncoated sensor were used as test samples. The sensors represent dual-channel electroacoustic delay lines operating in the vicinity of 77 MHz. The IDTs consist of split aluminum electrodes deposited on a AT-cut quartz substrate. The thickness-dependent influence of the parylene C layer was observed on the operating frequency (SAW velocity), static capacitance, attenuation, crosstalk, and reflection coefficient. COM parameters were reported for the four cases considered; measured and simulated data show good agreement. The presented approach is suitable for the design, characterization, and validation of polymer film-coated SAW sensors.
RESUMEN
A new series of cobalt A3-triarylcorroles were synthesized and the compounds examined as to their electrochemical and spectroscopic properties in CH2Cl2 or dimethyl sulfoxide (DMSO) containing 10 different anions added to the solution in the form of tetrabutylammonium salts. The investigated anions were PF6-, BF4-, HSO4-, ClO4-, Br-, I-, Cl-, OAc-, F-, OTs-, and CN-, all but three of which were found to facilitate reduction of the cobalt corrole in dilute CH2Cl2 solutions, as determined by a combination of UV-vis spectroscopy and spectroelectrochemistry. The synthesized corroles are represented as (Ar)3CorCo(DMSO), where Ar is a meso-phenyl group containing one of 10 different electron-donating or -withdrawing substituents. The axial DMSO ligand was found to dissociate in dilute (10-5 M) CH2Cl2 solutions, but this was not the case at the higher electrochemical concentration of 10-3 M, where the investigated corroles exhibit a rich redox reactivity, undergoing up to five reversible one-electron-transfer reactions under the different solution conditions. The reversible half-wave potentials for generation of the singly oxidized corroles varied by over 1.0 V with a change in the electron-donating or -withdrawing meso-phenyl substituents and type of anion added to the solution, ranging from E1/2 = 0.83 V in one extreme to -0.42 V in the other. Much smaller shifts in the potentials (on the order of â¼210 mV) were observed for the reversible first reduction as a function of changes of the anion and/or corrole substituents, with the only exception being in the case of CN-, where the E1/2 values in CH2Cl2 ranged from +0.08 V in solutions containing 0.1 M TBAClO4 to >-1.8 V upon the addition of CN-.
RESUMEN
Three mono-CN ligated anionic cobalt A3-triarylcorroles were synthesized and investigated as to their spectroscopic and electrochemical properties in CH2Cl2, pyridine (Py), and dimethyl sulfoxide (DMSO). The newly synthesized corroles provide the first examples of air-stable cobalt corroles with an anionic axial ligand and are represented as [(Ar)3CorCoIII(CN)]-TBA+, where Cor is the trivalent corrole macrocycle, Ar is p-(CN)Ph, p-(CF3)Ph, or p-(OMe)Ph, and TBA+ is the tetra-n-butylammonium (TBA) cation. Multiple redox reactions are observed for each mono-CN derivative with a key feature being a more facile first oxidation and a more difficult first reduction in all three solvents as compared to all previously examined corroles with similar meso- and ß-pyrrole substituents. Formation constants (log K) for conversion of the five-coordinate mono-CN complex to its six-coordinate bis-CN form ranged from 102.8 for Ar = p-(OMe)Ph to 104.7 for Ar = p-(CN)Ph in DMSO as determined by spectroscopic methodologies. The in situ generated bis-CN complexes, represented as [(Ar)3CorCoIII(CN)2]2-(TBA+)2, and the mixed ligand complexes, represented as [(Ar)3CorCoIII(CN)(Py)]-TBA+, were also investigated as to their electrochemical and spectroscopic properties. UV-visible spectra and electrode reactions of the synthesized mono-CN derivatives are compared with the neutral mono-DMSO cobalt corrole complexes and the in situ generated bis-CN and bis-Py complexes, and the noninnocent (or innocent) nature of each cobalt corrole system is addressed. The data demonstrate the ability of the CN- axial ligand(s) to stabilize the high-valent forms of the metallocorrole, leading to systems with innocent macrocyclic ligands. Although a number of six-coordinate cobalt(III) corroles with N-donor ligands were characterized in the solid state, a dissociation of one axial ligand readily occurs in nonaqueous solvents, and this behavior contrasts with the high stability of the currently studied bis-CN adducts in CH2Cl2, pyridine, or DMSO. Linear free energy relationships were elucidated between the meso-phenyl Hammett substituent constants (Σσ) and the measured binding constants, the redox potentials, and the energy of the band positions in the mono-CN and bis-CN complexes in their neutral or singly oxidized forms, revealing highly predictable trends in the physicochemical properties of the anionic corroles.
RESUMEN
A series of bis(pyridine)cobalt corroles with one or three nitrophenyl groups on the meso positions of the corrole macrocycle were synthesized and characterized as to their electrochemical and spectroscopic properties in dichloromethane, benzonitrile, and pyridine. The potentials for each electrode reaction were measured by cyclic voltammetry and the electron-transfer mechanisms evaluated by analysis of the electrochemical data combined with UV-visible spectra of the neutral, electroreduced, and electroxidized forms of the corroles. The proposed electronic configurations of the initial compounds and the prevailing redox reactions involving the electroactive central cobalt ion, the electroactive conjugated macrocycle, and the electroactive meso-nitrophenyl groups are all discussed in terms of solvent binding and the number of the nitrophenyl groups and other substituents on the meso-nitrophenyl rings of the compounds.
RESUMEN
In this research, Surface Acoustic Wave (SAW) sensors are combined with a cascade impactor to perform real time PM10 and PM2.5 mass concentration measurements. The SAW sensors consist of 125 MHz delay lines based on Love waves propagating on an AT-cut quartz substrate. The Love waves are guided on the substrate's surface using a silica layer. SAW sensors themselves are not capable to discriminate particles by their size, therefore, particle separation based on aerodynamic diameter is achieved using a 3 Lpm dedicated cascade impactor. The latter was designed to integrate the SAW sensors which are monitored using a phase shift measurement. The collected particles impact on the acoustic sensor's surface inducing a gravimetric effect that modifies the acoustic wave propagation conditions. The resulted phase shift allows the measurement of the mass deposited on the sensitive zone. The novel cascade impactor with SAW sensors as particle collecting stages is exposed to different aerosols in the 0-150 µg/m³ concentration range and proved to be able to detect and differentiate particles based on their size in real time. The system's response was compared to a commercial optical counter based on light scattering technology and was found to be in good agreement with it.
RESUMEN
A series of open-chain pentapyrroles and sapphyrins with highly electron-withdrawing substituents (i.e., CN, CF3 , or CO2 Me) on the meso-phenyl rings was synthesized and characterized as to the spectral properties, protonation reactions, and electrochemistry in non-aqueous media. The investigated compounds are represented as (Ar)4 PPyH3 and (Ar)4 SapH3 where PPy and Sap correspond to the tri-anion of the open-chain pentapyrrole and sapphyrin, respectively, and Ar=p-CNPh, p-CF3 Ph, or p-CO2 MePh. UV/Vis and 1 Hâ NMR spectroscopy as well as mass spectrometry data are given for the confirmation of the structures for the newly synthesized compounds. An X-ray structure for one of the pentapyrroles, that is, (p-CF3 Ph)4 PPyH3 (2), is also presented. The protonation processes were examined by UV/Vis absorption spectroscopy during the titration of the compounds with trifluoroacetic acid (TFA) in CH2 Cl2 . Equilibrium constants for the protonation reactions were calculated by using both the Hill equation and the mole ratio method. The protonation-initiated conversion of pentapyrroles to sapphyrins upon oxidation was also investigated. Cyclic voltammetry was used to measure the redox potentials in CH2 Cl2 , PhCN, and/or pyridine (Py). Electrochemical properties, protonation constants, and chemical reactions of the six compounds in the two series were then analyzed as a function of the solvent properties and the type of the electron-withdrawing groups on the meso-phenyl rings.
RESUMEN
Porous organic polymers (POPs), known for their high surface area and porosity, were prepared starting from tetraphenyl tetrahedral-shaped building blocks and corrole macrocyclic linkers either as free bases or cobalt complexes. This synthetic method allowed us to construct new porous frameworks with high carbon monoxide adsorption properties. Two synthetic strategies were developed for incorporating cobalt corroles into the porous matrix. The first method is based on the copper-free Sonogashira cross-coupling reaction between a free base diodo-corrole with a tetrahedral shaped derivative followed by cobalt complexation of the resulting material, leading to POP-CorCo-1. The second strategy consists of preparing POP-CorCo-2 by directly using in the coupling reaction the metalated cobalt corrole temporarily protected by two ammine ligands at the axial position. The design principles as well as the relationship between the structure and the selective CO adsorption performance are presented. The adsorption capacities and selectivities of CO were calculated from a multisite Langmuir isotherm model and using IAST theory. Spectroscopic studies (NMR, FTIR, UV-visible), kinetic sorption measurements and microscopic analyses made possible to provide a fairly complete description of the structure of the POPs, their porosity and the nature of solid-gas interactions. The POPs prepared by both methods show a high permanent porosity and outstanding CO sorption properties with a high selectivity over N2, O2 and CO2, up to 15 700, 4000 and 1800, respectively. The two POP-CorCo therefore offer confined molecular spaces for ascertaining a high accessibility of the metallocorrole active sites for gas binding on the cobalt atom, thus featuring high potential for applications in selective capture or sensing of CO versus N2, O2 and CO2.
RESUMEN
This paper presents theoretical and experimental developments for the implementation of surface acoustic waves (SAW) sensors able to detect small concentrations of anhydride fluorhydric (HF) acid in air. Solutions based on the use of surface transverse waves (STW) on quartz (YXlt)/36 degrees/90 degrees have been analyzed to evaluate their sensitivity to HF. Devices have been tested first in a NH4F solution to evaluate the kinetics of the reaction. Measurements then were performed under various gaseous conditions to characterize the sensors when they are submitted to different controlled dilutions of HF in air. STW resonators have been successfully tested in different conditions, with capabilities to detect HF concentration much smaller than 1 ppm.
RESUMEN
Mass-sensitive electro-acoustic devices such as surface acoustic wave (SAW)micro-balances, capable to operate with aqueous media are particularly favorable for thedevelopment of biosensors. Their dimensions and physical properties offer a large potentialin biological fluid investigations, especially for measuring physical phenomenon (massdeposition, adsorption, pressure...). In this work, we propose a specific gratingconfiguration to lower the influence of viscosity of fluids which reduces the signal dynamicsof the surface wave transducers. A dedicated liquid cell also has been developed to isolatethe electro-active part of the device. The fabrication of the cell is achieved using theSU-8TMphoto-resist, allowing for manufacturing thick structures preventing any contact between thetested liquids and the transducers. Furthermore, the sensing area has been optimized tooptimize the sensor gravimetric sensitivity. The operation of the sensor is illustrated bydetecting bovine serum albumin (BSA) adsorption in the sensing area.
RESUMEN
Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-µm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity.