Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Mol Cell Cardiol ; 77: 168-74, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25451387

RESUMEN

Cardiac hypertrophy of the left ventricle (LV) in response to dynamic exercise-training (EX) is a beneficial adaptation to increased workload, and is thought to result from genetic reprogramming. We aimed to determine which transcription factors (TFs) are involved in this genetic reprogramming of the LV in swine induced by exercise-training. Swine underwent 3-6 weeks of dynamic EX, resulting in a 16% increase of LV weight/body weight ratio compared to sedentary animals (P=0.03). Hemodynamic analysis showed an increased stroke volume index (stroke volume/body weight +35%; P=0.02). Microarray-analysis of LV tissue identified 339 upregulated and 408 downregulated genes (false discovery rate<0.05). Of the human homologues of the differentially expressed genes, promoter regions were searched for TF consensus binding sites (TFBSs). For upregulated and downregulated genes, 17 and 24 TFBSs were overrepresented by >1.5-fold (P<0.01), respectively. In DNA-binding assays, using LV nuclear protein extracts and protein/DNA array, signal intensity changes >2-fold were observed for 23 TF-specific DNA probes. Matching results in TFBS and protein/DNA array analyses were obtained for transcription factors YY1 (Yin Yang 1), PAX6 (paired box 6) and GR (glucocorticoid receptor). Notably, PAX6 and GR show lower signals in TFBS and protein/DNA array analyses upon exercise-training, whereas we previously showed higher signals for these factors in the remodeled LV of swine post-myocardial infarction (MI). In conclusion, we have identified transcription factors that may drive the genetic reprogramming underlying exercise-training induced LV hypertrophy in swine. PAX6 and GR are among the transcription factors that are oppositely regulated in LV hypertrophy after exercise-training and MI. These proteins may be at the base of the differences between pathological and physiological hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Transcriptoma , Animales , Sitios de Unión , Cardiomegalia/genética , Epigénesis Genética , Femenino , Genómica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Condicionamiento Físico Animal , Carrera , Análisis de Secuencia de ADN , Sus scrofa , Factores de Transcripción/fisiología
2.
Circulation ; 125(25): 3142-58, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22661514

RESUMEN

BACKGROUND: New vessel formation contributes to organ development during embryogenesis and tissue repair in response to mechanical damage, inflammation, and ischemia in adult organisms. Early angiogenesis includes formation of an excessive primitive network that needs to be reorganized into a secondary vascular network with higher hierarchical structure. Vascular pruning, the removal of aberrant neovessels by apoptosis, is a vital step in this process. Although multiple molecular pathways for early angiogenesis have been identified, little is known about the genetic regulators of secondary network development. METHODS AND RESULTS: Using a transcriptomics approach, we identified a new endothelial specific gene named FYVE, RhoGEF, and PH domain-containing 5 (FGD5) that plays a crucial role in vascular pruning. Loss- and gain-of-function studies demonstrate that FGD5 inhibits neovascularization, indicated by in vitro tube-formation, aortic-ring, and coated-bead assays and by in vivo coated-bead plug assays and studies in the murine retina model. FGD5 promotes apoptosis-induced vaso-obliteration via induction of the hey1-p53 pathway by direct binding and activation of cdc42. Indeed, FGD5 correlates with apoptosis in endothelial cells during vascular remodeling and was linked to rising p21(CIP1) levels in aging mice. CONCLUSION: We have identified FGD5 as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Endotelio Vascular/patología , Factores de Intercambio de Guanina Nucleótido/fisiología , Células Endoteliales de la Vena Umbilical Humana/patología , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neovascularización Patológica/genética , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Transcriptoma/genética
3.
Circ Res ; 109(4): 382-95, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21700929

RESUMEN

RATIONALE: Neovascularization is required for embryonic development and plays a central role in diseases in adults. In atherosclerosis, the role of neovascularization remains to be elucidated. In a genome-wide microarray-screen of Flk1+ angioblasts during murine embryogenesis, the v-ets erythroblastosis virus E26 oncogene homolog 2 (Ets2) transcription factor was identified as a potential angiogenic factor. OBJECTIVES: We assessed the role of Ets2 in endothelial cells during atherosclerotic lesion progression toward plaque instability. METHODS AND RESULTS: In 91 patients treated for carotid artery disease, Ets2 levels showed modest correlations with capillary growth, thrombogenicity, and rising levels of tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1, and interleukin-6 in the atherosclerotic lesions. Experiments in ApoE(-/-) mice, using a vulnerable plaque model, showed that Ets2 expression was increased under atherogenic conditions and was augmented specifically in the vulnerable versus stable lesions. In endothelial cell cultures, Ets2 expression and activation was responsive to the atherogenic cytokine TNFα. In the murine vulnerable plaque model, overexpression of Ets2 promoted lesion growth with neovessel formation, hemorrhaging, and plaque destabilization. In contrast, Ets2 silencing, using a lentiviral shRNA construct, promoted lesion stabilization. In vitro studies showed that Ets2 was crucial for TNFα-induced expression of monocyte chemoattractant protein 1, interleukin-6, and vascular cell adhesion molecule 1 in endothelial cells. In addition, Ets2 promoted tube formation and amplified TNFα-induced loss of vascular endothelial integrity. Evaluation in a murine retina model further validated the role of Ets2 in regulating vessel inflammation and endothelial leakage. CONCLUSIONS: We provide the first evidence for the plaque-destabilizing role of Ets2 in atherosclerosis development by induction of an intraplaque proinflammatory phenotype in endothelial cells.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Análisis de Varianza , Animales , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Enfermedades de las Arterias Carótidas/inmunología , Enfermedades de las Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/fisiopatología , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Hemorragia/metabolismo , Humanos , Inflamación/inmunología , Inflamación/patología , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica , Fenotipo , Proteína Proto-Oncogénica c-ets-2/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Rotura , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Molécula 1 de Adhesión Celular Vascular/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 32(5): 1289-98, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22426130

RESUMEN

OBJECTIVE: In cardiovascular regulation, heme oxygenase-1 (HO-1) activity has been shown to inhibit vascular smooth muscle cell (VSMC) proliferation by promoting cell cycle arrest at the G1/S phase. However, the effect of HO-1 on VSMC migration remains unclear. We aim to elucidate the mechanism by which HO-1 regulates PDGFBB-induced VSMC migration. METHODS AND RESULTS: Transduction of HO-1 cDNA adenoviral vector severely impeded human VSMC migration in a scratch, transmembrane, and directional migration assay in response to PDGFBB stimulation. Similarly, HO-1 overexpression in the remodeling process during murine retinal vasculature development attenuated VSMC coverage over the major arterial branches as compared with sham vector-transduced eyes. HO-1 expression in VSMCs significantly upregulated VEGFA and VEGFR2 expression, which subsequently promoted the formation of inactive PDGFRß/VEGFR2 complexes. This compromised PDGFRß phosphorylation and impeded the downstream cascade of FAK-p38 signaling. siRNA-mediated silencing of VEGFA or VEGFR2 could reverse the inhibitory effect of HO-1 on VSMC migration. CONCLUSIONS: These findings identify a potent antimigratory function of HO-1 in VSMCs, a mechanism that involves VEGFA and VEGFR2 upregulation, followed by assembly of inactive VEGFR2/PDGFRß complexes that attenuates effective PDGFRß signaling.


Asunto(s)
Hemo-Oxigenasa 1/farmacología , Músculo Liso Vascular/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Movimiento Celular , Proliferación Celular , Hemo-Oxigenasa 1/metabolismo , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis
5.
Aging Cell ; 22(3): e13768, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36756698

RESUMEN

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.


Asunto(s)
Proteínas de Unión al ADN , Insuficiencia Cardíaca , Ratones , Animales , Humanos , Proteínas de Unión al ADN/metabolismo , Miocitos Cardíacos/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Insuficiencia Cardíaca/genética , Endonucleasas
6.
Gut ; 60(9): 1204-12, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21307168

RESUMEN

Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or ß-catenin genes underlies colorectal carcinogenesis. As a result, ß-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear ß-catenin, with the highest levels observed at the invasion front. Activation of receptor tyrosine kinases in these tumour areas by growth factors expressed by surrounding stromal cells phosphorylate ß-catenin at tyrosine residues, which is thought to increase ß-catenin nuclear translocation and tumour invasiveness. This study investigates the relevance of ß-catenin tyrosine phosphorylation for Wnt signalling and intestinal tumorigenesis in vivo. Design A conditional knock-in mouse model was generated into which the phospho-mimicking Y654E modification in the endogenous ß-catenin gene was introduced. Results This study provided in vivo evidence that ß-catenin(E654) is characterised by reduced affinity for cadherins, increased signalling and strongly increased phosphorylation at serine 675 by protein kinase A (PKA). In addition, homozygosity for the ß-catenin(E654) targeted allele caused embryonic lethality, whereas heterozygosity predisposed to intestinal tumour development, and strongly enhanced Apc-driven intestinal tumour initiation associated with increased nuclear accumulation of ßcatenin. Surprisingly, the expression of ß-catenin(E654) did not affect histological grade or induce tumour invasiveness. Conclusions A thus far unknown mechanism was uncovered in which Y654 phosphorylation of ß-catenin facilitates additional phosphorylation at serine 675 by PKA. In addition, in contrast to the current belief that ß-catenin Y654 phosphorylation increases tumour progression to a more invasive phenotype, these results show that it rather increases tumour initiation by enhancing Wnt signalling.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas Wnt/fisiología , beta Catenina/metabolismo , Adenoma/genética , Adenoma/metabolismo , Animales , Células COS , Cadherinas/metabolismo , Membrana Celular/metabolismo , Transformación Celular Neoplásica/genética , Chlorocebus aethiops , Neoplasias Colorrectales/genética , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Pérdida del Embrión/genética , Técnicas de Sustitución del Gen , Genes APC , Genotipo , Heterocigoto , Homocigoto , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Fosforilación/fisiología
7.
Sci Rep ; 10(1): 13173, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764569

RESUMEN

The prevalence of diabetic metabolic derangement (DMetD) has increased dramatically over the last decades. Although there is increasing evidence that DMetD is associated with cardiac dysfunction, the early DMetD-induced myocardial alterations remain incompletely understood. Here, we studied early DMetD-related cardiac changes in a clinically relevant large animal model. DMetD was established in adult male Göttingen miniswine by streptozotocin injections and a high-fat, high-sugar diet, while control animals remained on normal pig chow. Five months later left ventricular (LV) function was assessed by echocardiography and hemodynamic measurements, followed by comprehensive biochemical, molecular and histological analyses. Robust DMetD developed, evidenced by hyperglycemia, hypercholesterolemia and hypertriglyceridemia. DMetD resulted in altered LV nitroso-redox balance, increased superoxide production-principally due to endothelial nitric oxide synthase (eNOS) uncoupling-reduced nitric oxide (NO) production, alterations in myocardial gene-expression-particularly genes related to glucose and fatty acid metabolism-and mitochondrial dysfunction. These abnormalities were accompanied by increased passive force of isolated cardiomyocytes, and impaired LV diastolic function, evidenced by reduced LV peak untwist velocity and increased E/e'. However, LV weight, volume, collagen content, and cardiomyocyte cross-sectional area were unchanged at this stage of DMetD. In conclusion, DMetD, in a clinically relevant large-animal model results in myocardial oxidative stress, eNOS uncoupling and reduced NO production, together with an altered metabolic gene expression profile and mitochondrial dysfunction. These molecular alterations are associated with stiffening of the cardiomyocytes and early diastolic dysfunction before any structural cardiac remodeling occurs. Therapies should be directed to ameliorate these early DMetD-induced myocardial changes to prevent the development of overt cardiac failure.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diástole , Mitocondrias/patología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Animales , Respiración de la Célula , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Hemodinámica , Porcinos
8.
Genesis ; 47(1): 7-13, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18942097

RESUMEN

To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin-rtTA2-M2 mice were then bred with the previously developed tetO-HIST1H2BJ/GFP model to assess inducibility and tissue-specificity. Expression of the histone H2B-GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin-rtTA2-M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin-rtTA2-M2 system drives transgene expression in a dosage-dependent fashion. Thus, we have generated a novel doxycycline-inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology.


Asunto(s)
Doxiciclina/farmacología , Expresión Génica/efectos de los fármacos , Ingeniería Genética/métodos , Intestinos/fisiología , Animales , Genes Reporteros/genética , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Ratones Transgénicos , Especificidad de Órganos , Investigación , Volumetría , Transgenes/genética
9.
Cardiovasc Res ; 113(14): 1776-1788, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016873

RESUMEN

AIMS: The formation of cell-cell and cell-extra cellular matrix (ECM) contacts by endothelial cells (ECs) is crucial for the stability and integrity of a vascular network. We previously identified cingulin-like 1 (Cgnl1) in a transcriptomic screen for new angiogenic modulators. Here we aim to study the function of the cell-cell junction associated protein Cgnl1 during vessel formation. METHODS AND RESULTS: Unlike family member cingulin, Cgnl1 expression is enriched in ECs during vascular growth. Cgnl1 is important for the formation of multicellular tubule structures, as shown in vitro using loss-of function assays in a 3D matrix co-culture system that uses primary human ECs and supporting mural cells. Further studies revealed that Cgnl1 regulates vascular growth by promoting Ve-cadherin association with the actin cytoskeleton, thereby stabilizing adherens junctions. Cgnl1 also regulates focal adhesion assembly in response to ECM contact, promoting vinculin and paxillin recruitment and focal adhesion kinase signalling. In vivo, we demonstrate in a postnatal retinal vascular development model in mice that Cgnl1 function is crucial for sustaining neovascular growth and stability. CONCLUSIONS: Our data demonstrate a functional relevance for Cgnl1 as a defining factor in new vessel formation both in vitro and in vivo.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular/fisiología , Proteínas del Citoesqueleto/genética , Endotelio Vascular/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL
10.
Int J Dev Biol ; 49(4): 437-41, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15968590

RESUMEN

The Fxr gene family is composed of three members, FMR1, FXR1 and FXR2. The FMR1 gene is involved in the fragile X syndrome, whereas for the other two members, no human disorder has been identified yet. An appropriate animal model to study in vivo gene function is essential to unravel the cellular function of the gene products FMRP, FXR1P and FXR2P, respectively. In Xenopus tropicalis both Fmr1 and Fxr1 were identified; however, unexpectedly Fxr2 was not. Here we describe the characterization of both Fmrp and Fxr1p in Xenopus tropicalis. Fmrp is expressed ubiquitously throughout the embryo during embryonic development, whereas Fxr1p shows a more tissue-specific expression particularly during late embryonic development. In adult frogs both proteins are highly expressed in most neurons of the central nervous system and in all spermatogenic cells in the testis. In addition, Fxr1p is also highly expressed in striated muscle tissue. Western blotting experiments revealed only one prominent isoform for both proteins using different tissue homogenates from adult frogs. Thus, for in vivo gene function studies, this relative simple animal model may serve as a highly advantageous and complementary model.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Proteínas de Unión al ARN/genética , Proteínas de Xenopus/metabolismo , Xenopus/genética , Secuencia de Aminoácidos , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Modelos Animales , Datos de Secuencia Molecular , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
11.
Cardiovasc Res ; 110(1): 129-39, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822228

RESUMEN

AIMS: Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS: Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION: THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Microvasos/metabolismo , Neovascularización Patológica/metabolismo , Trombospondinas/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Placa Aterosclerótica/patología , Trombospondina 1/metabolismo
12.
Dev Genes Evol ; 215(4): 198-206, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15818485

RESUMEN

Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development. Interestingly, the ortholog of the FMR1 gene has been identified not only in mouse, but also in zebrafish (Danio rerio). In this study, an amino acid sequence comparison of FMRP orthologs was performed to determine the similar regions of FMRP between several species, including human, mouse, frog, fruitfly and zebrafish. Further characterisation of Fmrp has been performed in both adults and embryos of zebrafish using immunohistochemistry and western blotting with specific antibodies raised against zebrafish Fmrp. We have demonstrated a strong Fmrp expression in neurons of the brain and only a very weak expression in the testis. In brain tissue, a different distribution of the isoforms of Fmrp, compared to human and mouse brain tissue, was shown using western blot analysis. Due to the high similarity between zebrafish Fmrp and human FMRP and their similar expression pattern, the zebrafish has great potential as a complementary animal model to study the pathogenesis of the fragile X syndrome, especially during embryonic development.


Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Química Encefálica/genética , Células COS , Chlorocebus aethiops , Secuencia Conservada , Embrión no Mamífero , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Inmunohistoquímica , Modelos Animales , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Señales de Localización Nuclear/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transfección , Pez Cebra/embriología
13.
J Exp Biol ; 207(Pt 19): 3329-38, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15326209

RESUMEN

The X-linked FMR1 gene, which is involved in the fragile X syndrome, forms a small gene family with its two autosomal homologs, FXR1 and FXR2. Mouse models for the FXR genes have been generated and proved to be valuable in elucidating the function of these genes, particularly in adult mice. Unfortunately, Fxr1 knockout mice die shortly after birth, necessitating an animal model that allows the study of the role of Fxr1p, the gene product of Fxr1, in early embryonic development. For gene function studies during early embryonic development the use of zebrafish as a model organism is highly advantageous. In this paper the suitability of the zebrafish as a model organism to study Fxr1p function during early development is explored. As a first step, we present here the initial characterization of Fxr1p in zebrafish. Fxr1p is present in all the cells from zebrafish embryos from the 2/4-cell stage onward; however, during late development a more tissue-specific distribution is found, with the highest expression in developing muscle. In adult zebrafish, Fxr1p is localized at the myoseptum and in costamere-like granules in skeletal muscle. In the testis, Fxr1p is localized in immature spermatogenic cells and in brain tissue Fxr1p displays a predominantly nuclear staining in neurons throughout the brain. Finally, the different tissue-specific isoforms of Fxr1p are characterized. Since the functional domains and the expression pattern of Fxr1p in zebrafish are comparable to those in higher vertebrates such as mouse and human, we conclude that the zebrafish is a highly suitable model for functional studies of Fxr1p.


Asunto(s)
Perfilación de la Expresión Génica , Modelos Animales , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Crioultramicrotomía , Cartilla de ADN , Inmunohistoquímica , Datos de Secuencia Molecular , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA